Inventory Record Calculator

SSWRF Flaring Emissions from Flaring of Digester Gas

JIWRF On-site Energy Use Emissions from Wastewater Treatment Energy U SSWRF On-site Energy Use Emissions from Wastewater Treatment Energy U

JIWRF Landfill Gas Emissions from Wastewater Treatment Energy U SSWWRF DG Combustion Emissions from the Combustion of Digester Gas Combined SSWRF & JIWRF Process N2O Emissions from Wastewater Treatr

Combined SSWRF & JIWRF N-load to river Process N2O from Effluent Discharge to Rivers a

Gpc Scope	GPC Ref Number	Factor Profiles
Scope 1	III.4.3	
Scope 2 Scope 3	I.3.2 VI.1	2018 WE Energies 2018 WE Energies
Scope 1 Scope 1 Scope 1	I.3.1 I.3.1 III.4.3	
Scope 1	III.4.3	

Notes

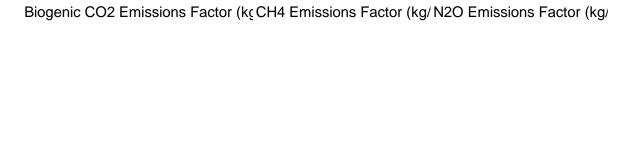
Based on average heat content of 580 Btu/scf determined that the 114,991

MMBtu was 543,179 scf/day

Left as Information Only as it is assumed that WE Energies Data would include Jones Island as it is in the Milwaukee Boundary.

109,970.84
20,099.82

Left this record as information only based on response below. It is not clear whether the "LFG" came from another Metro or Orchard or another landfill.


At the time of data request, N load was unavailable. However, Kevin indicated it could estimated.

CH4 (MT)	N2O (MT)		CO2e (MT)	Tags
24.1	6		676.47	
10.2 1.8		0.51 0.16	110,393.80 20,192.98	
1.6 0.5		0.03 0.10 5.18	17,864.87 40.47 1,372.70	
		-	-	

Annual Gas Production (scf / Energy Equivalent (MMBtu Biogenic CO2 (MT)

132568.2939

272008249.5 157764.7847 8214.81234

0.0032

0.00063

52.07

Calculation Typ	Do you have data on Gas Composition or Heat Cor	nter Gas Productio Gas Compositio
Site Specific	Heat Content	744718

Heat Content Population Served Is Energy Recovered from Combustion'

580 592025 Yes-used on site 592000

Wastewater Generation and Treatmenotation Keys	s Data Quality:	Activity Data Quality:	Emission
Imported	Medium	Medium	
	High	High	
Imported Imported	Medium	Medium	
Imported			

CO2 lbs/MWh CO2 kg/MWh CH4 lbs/GWh CH4 kg/GWh N2O lbs/GWh N2O kg/GWh

117	17
117	17
117	17
117	17
117	17
117	17
	117 117 117

Wastewater Electric Energy Equivaler Gallons per Car CO2e per Person (MT)

1718893.225 NaN Infinity 241602.7918 NaN Infinity

335891 NaN Infinity

Electricity Energy (MMB Natural Gas Energy(MI Electric CO2 Emissions Facto Natural Gas CO2 Emiss

157632.2253	1561261	0.172507734	0.05302
61010.79181	180592	0.172507734	0.05302
0	335891	0.000132903	0.05302

Electric CH4 Emissions Fact Natural Gas CH4 Emiss Electric N2O Emissions Fact

1.55496E-05	0.000005	2.25935E-06
1.55496E-05	0.000005	2.25935E-06
1.55496E-05	0.000005	2.25935E-06

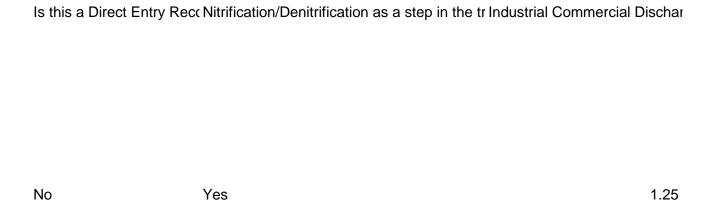
Natural Gas N2O Emiss Is this a Direct Entry RecCO2	CH4	N2O	Electricity Use Na	atural Gas U
0.0000001 No 0.0000001 No			46186242 17876162	1561261 180592
0.0000001 No				335891

Treatment Location Annual Digester Gas Flared (sc CH4 Emissions F CH4 Emissions Facto

198396129.8 1.21775E-07

0

In Boundary
Out of Boundary


In Boundary

Site S	Specific or Population Based Apprc Digester Ga	s Produc Fraction of CH4 in Dig	geste
Site S	Specific	543179	0.65

Destruction Effici Process N2O Population Serve CO2e per Capita (MT N2O Emissions Factor (g/p 0.99

592000 0.00231875

7

rge Multiplier

Inventory Record	Calculator	Gpc Scope
Waste Collection and Trans Orchard - Boundary Orchard - Parkview Orchard-Orchard	Collection and Transportation Emissions Emissions from Flaring of Landfill Gas Emissions from Flaring of Landfill Gas Emissions from Flaring of Landfill Gas	Scope 3 Scope 3 Scope 3 Scope 3
Metro Flare #1 Orchard Turbine #4 Orchard Turbine #3 Orchard Turbine #2 Orchard Turbine #1	Emissions from Flaring of Landfill Gas Emissions from the Combustion of Landfill Gas	Scope 3 Scope 3 Scope 3 Scope 3
Metro Landfill Turbine Plant	Emissions from the Combustion of Landfill Gas	Scope 3
Metro Landfill Engine Plant	Emissions from the Combustion of Landfill Gas	Scope 3

Waste Generation (2019)

Waste Generation (2019)

Non-residential Waste

Residential Waste

Scope 3 Scope 3

GPC Ref Number Factor Profiles

VI.1 2009 WI State-wide waste Chara

III.1.2

III.1.2

III.1.2

III.1.2

1.4.4

1.3.1

1.4.4

1.4.4

1.4.4

1.4.4

III.1.2 2009 WI State-wide waste Chara
III.1.2 2009 WI State-wide waste Chara

N	lot	00
11	IOT	-

Did not have access to specific fuel usage from the collection and tranportation of waste. Assumed that this is included in community VMT.

> 2.03 44.23 20.17

Used destruction efficiency of %99. Clearpath can only use 2 decimal places for destruction efficiency

41.78

1.34 1.37

0.96

1.25

The percentage of "Milwuakee" waste that makes up Metro's combustion activity is unknown. This record indicates the full amount of emissions associated with the combustion activity and due to the de minimis value has been indicated as "For Information Only"

1.33

The percentage of "Milwuakee" waste that makes up Metro's combustion activity is unknown. This record indicates the full amount of emissions associated with the combustion activity and due to the de minimis value has been indicated as "For Information Only"

0.66

https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials Both of the landfills that are primary receivers of the City's waste capture landfill gas, of which methane is one component. Both use landfill gas to generate electricity through turbines/engines. Both also combust landfill gas in flares. This manages gas that exceeds the energy recovery capacity, and during downtime. The flared fraction can be highly variable depending on the time period considered. LYNN MORGAN Public Affairs Manager WI/MN/Dakotas Area Imorgan@wm.com C: 414.429.2019 O: 262.250.8711

3,574.51

2,085.05

N2O (MT)	CO2e (MT)	Tags	Annual Landfill Gas Flared (
	- 56.79		21600550
	1,238.41		471033790
	564.64		214762450
	1,169.92		444981100
0.26	107.46		
0.27	110.20		
0.19	76.58		
0.25	99.96		
0.26	106.49		
0.13	53.00		

11129.32914	9.38978E-08	21600550	0.5012
242692.4353	9.38978E-08	471033790	0.5012
110652.8303	9.38978E-08	214762450	0.5012
229269.2141	9.38978E-08	444981100	0.5012
418876.5709			
429554.26			
298506.2859			
389632.4046			

415099.7686

206600.8317

Destruction Effici Landfill Locatior Notation Keys Data Quality: Activity Data Quality: Emissior

0.99	IE Out-of-Boundar Out-of-Boundar	Medium High High	Medium High High
0.99	Out-of-Boundar Out-of-Boundar Out-of-Boundar Out-of-Boundar Out-of-Boundar	Medium High High	Medium High High
	Out-of-Boundar	High	High
	Out-of-Boundar	High	High

Low Medium High Medium

Annual Gas Combusted (scf / \Biogenic CO2 (MT)

835316690	21810.90304
856609960	22366.89032
595276270	15543.22231
776998460	20288.15931

805653530 21614.24495

400984780 10757.70531

Do you have data on Gas Composition or Heat Conten Landfill Gas Combu Gas Compositio

Gas Composition Gas Composition Gas Composition Gas Composition	835316690 856609960 595276270 776998460	48.78 48.78 48.78 48.78
Gas Composition	805653530	50.12
Gas Composition	400984780	50.12

Heat Content	Is Energy Recovered from	Combustion' Percentage	Newspap Percentage Office Pa
i ioat ooiitoiit	io Eliolgy Robovolog Holli	Combaction i croomage	rionopapi orcomago omco i c

1.4 7.2

500 Yes-sent to grid 500 Yes-used on site 500 Yes-sent to grid 500 Yes-sent to grid

500 Yes-sent to grid

500 Yes-sent to grid

 1.4
 7.2

 1.4
 7.2

Percentage Corrugated Cardl Percentage Magazines / Third C Percentage Food Scr Percentage Gı

4.6 1.6 15.8 1.7

4.61.615.81.74.61.615.81.7

Percentage Leav Percentage Branch Percentage Dimensional Lumber

1.7 0.6 1.2

1.7 0.6 1.7 0.6 1.2 1.2 Inventory Record Calculator Gpc Scope GPC Ref Number County-wide Non-Road NEI 2017 Dat₁ Emissions from Off Road Ve Scope 1 Public Transit Notation Key **Emissions from Public Trans Aviation Emissions** Notation Keys for Transporta Scope 1 11.4.1 Marine Transportation Notation Keys for Transporta Scope 1 II.3.1 EVs On-road Estimate Notation Keys for Transports Scope 2 II.1.2 In-Boundary Onroad VMT-Gasoline On Road Transportation Scope 1 II.1.1 Orig-Dest Onroad VMT Diesel On Road Transportation Scope 1 II.1.1 Orig-Dest Onroad VMT Gasoline On Road Transportation Scope 1 II.1.1 In-Boundary Onroad VMT-Diesel On Road Transportation Scope 1 II.1.1

Factor Profiles

RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (updated)

RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 and 2018 US National Defaults (update RFC West (RFCW) eGRID 2018 eGR

Notes CO2 (MT)

Data from US EPA NEI 2017 for Milwaukee County. Should be downscaled. Leave as Information Only until appropriate proxy is found. Per SEWRPC, Christopher Hiebert, VMT data includes all onroad activity include transit buses. Electrified rail is included within the Commercial Sector electricity data and was not able to pull data out.

Unable to get data from County Airport at this time, but future inventories can work to obtain estimates of activity from Landing, Take-off, & Operations from Airport Authority.

Unable to get data from Port Authority at this time, but future inventories can work to obtain estimates of activity from Cargo, Ferry, and Private vessels.

EV Hub estimates about 451 EVs on the road in Milwaukee County. The current relative de minimis value of these emissions is assumed included in residential and commercial electricity.

Christopher T. Hiebert, P.E. | Chief Transportation Engineer chiebert@sewrpc.org | 262.953.3227

443,205.74 281,652.23 710,374.09 175,724.15

331,644.00

CH4 (MT)		N2O (MT)		CO2e (M7	Γ)	Tags	GPC Reference Number
	123.66		-		335,106.48		
	-		-		-		
							II.4.1
							II.3.1
							II.1.2
	20.63 0.85 33.06 0.53		12.82 0.82 20.54 0.51		447,179.66 281,892.76 716,743.54 175,874.22		

Notation Keys Off Road Fuel Use	Energy Equivalent (MMBtu Bio CO2 (MT)	
	0 0)
IE		
NE		
NE		

ΙE

CO2 Emissions Factor	Biogenic CO2 Emission	s F CH4 Emission	s FN2O Emission	ıs F
	0	0	0	0
	0	0	0	0

1.06936E-08	1.7211E-08	0.068413598	0.07024
4.257E-10	4.429E-10	0.073773234	0.073934483
1.06936E-08	1.7211E-08	0.068413598	0.07024
4.257E-10	4.429E-10	0.073773234	0.073934483

Is this a Direct Entry Recc Equipment Type Sector Fuel Type Fuel Used

Yes

Gasoline Diesel Gasoline Diesel

Percent Biofuel Blend	Data Source	Previously Calculated CI Previously	Calculated C
	EPA NONROAD	331644	123.66

0 0 0 0 0 0 0 0 Previously Calculated N. Previously Calculated Biogenic (Data Quality: Activity Data Quality: Emissic

Medium Medium

 Transit VM1Transit Energy Equivalent (MM Biogenic CO2 (MT)

0 0

Emissions per Passenger (MT CO2e / Pass	Emissions per Service Population (MT CO2e / Per
NaN	NaN

Energy Per Passenger (N	MMBtu / Passen Energy per Servio	ce Population (MMBtu / Persor
NaN	NaN	

Fossil Energy (MMB Biofuel Energy (MMBtu) Calculation Typ Activity Locatic Vehicle Type

Within Jurisdic

Annual Fuel Use Annual Revenue Miles Traveled Passenger Mil Passenger Mile CO2 F

Passenger Mile CH4 F Passenger Mile N2O F Passenger Boardings (op

1,166.096

1,166.096 1,166.096 1,166.096 1,166.096

CH4 lbs/GWh CH4 kg/GWh N2O lbs/GWh N2O kg/GWh

117 17

 117
 17

 117
 17

 117
 17

 117
 17

Gas Passenger Vehicle Fuel Economy	Gas Passenger Vehicle g CH4/Gas PassengerVehicle g N2C	

24.21489	0.0186	0.0093
24.21489	0.0186	0.0093
24.21489	0.0186	0.0093
24.21489	0.0186	0.0093
24.21489	0.0186	0.0093

Gas Light Truck Fuel Economy (Gas Light Truck g CH4/ı Gas Light Truck g N2O/ı

17.52427	0.0201	0.0167
17.52427	0.0201	0.0167
17.52427	0.0201	0.0167
17.52427 17.52427	0.0201 0.0201	0.0167 0.0167
11.32421	0.0201	0.0167

Gas Heavy Truck Fuel Economy (\mbox{N} Gas Heavy Truck g CH4/m Gas Heavy Truck g N2O/m

5.361348	0.086	0.0664
5.361348	0.086	0.0664
5.361348	0.086	0.0664
5.361348	0.086	0.0664
5.361348	0.086	0.0664

Gas Transit Bus Fuel Economy (Gas Transit Bus g CH4/ Gas Transit Bus g N2O/

17.52427	0.0201	0.0167
17.52427	0.0201	0.0167
17.52427	0.0201	0.0167
17.52427	0.0201	0.0167
17.52427	0.0201	0.0167

Gas Para Transit Bus Fuel Econom Gas Para Transit Bus g CF Gas Para Transit Bus g N2

17.52427	0.0201	0.0167
17.52427 17.52427 17.52427	0.0201 0.0201 0.0201	0.0167 0.0167 0.0167
17.52427	0.0201	0.0167

Gas Motorcycle Fuel Economy (I Gas Motorcycle g CH4/r Gas Motorcycle g N2O/r

24.21489	0.0186	0.0093
24.21489	0.0186	0.0093
24.21489	0.0186	0.0093
24.21489	0.0186	0.0093
24.21489	0.0186	0.0093

Electric Vehicle Fuel Economy (M Diesel Passenger Vehicle Fuel Economy (

24.21489

24.21489 24.21489 24.21489 24.21489

Diesel Passenger	r Vehicle g CH4/ı Diese	l PassengerVehicle g	g N2O, Diesel Light Trucl	k Fuel Economy (I
------------------	-------------------------	----------------------	---------------------------	-------------------

0.0005	0.001	17.52427
0.0005	0.001	17.52427
0.0005	0.001	17.52427
0.0005	0.001	17.52427
0.0005	0.001	17.52427

Diesel Light Truck g CH4/n Diesel Light Truck g N2O/r Diesel Heavy Truck Fuel Economy (M

0.001	0.0015	6.224736

0.001	0.0015	6.224736
0.001	0.0015	6.224736
0.001	0.0015	6.224736
0.001	0.0015	6.224736

Diesel Heavy Truck g CH4/mi Diesel Heavy Truck g N2O/mi Diesel Transit Bus Fuel Economy (I

0.0051	0.0048	17.52427
0.0051	0.0048	17.52427
0.0051	0.0048	17.52427
0.0051	0.0048	17.52427
0.0051	0.0048	17.52427

Diesel Transit Bus g CH4/r Diesel Transit Bus g N2O/r Diesel Para Transit Bus Fuel Economy

0.001	0.0015	17.52427
0.001	0.0015	17.52427
0.001	0.0015	17.52427
0.001	0.0015	17.52427
0.001	0.0015	17.52427

Diesel Para Transit Bus g CH Diesel Para Transit Bus g N2(Diesel Motorcycle Fuel Economy (N

0.001	0.0015	24.21489
0.001	0.0015	24.21489
0.001	0.0015	24.21489
0.001	0.0015	24.21489
0.001	0.0015	24.21489

Diesel Motorcycle g CH4/m Diesel Motorcycle g N2O/m On Road VMT

0.001
0

0.0005	0.001	1198514200
0.0005	0.001	1920989200
0.0005	0.001	1920989200
0.0005	0.001	1198514200

Fossil Fuel Energy Equivalent (MI Biogenic-CO2 (MT Biofuel CH4 (MT) Biofuel N2O (MT)

6309876.656	0	0	0
3809483.955	0	0	0
10113526.32	0	0	0
2376754.963	0	0	0

Emissions per Capita (MT CO2 per Pe Emissions per Mile (g CO2e per mi Calculation Method

Infinity Infinity Infinity Infinity 373.1116946 VMT & MPG 146.7435403 VMT & MPG 373.1116946 VMT & MPG 146.7435403 VMT & MPG VMT Location Travel Type Type of VMT or Emissions Da Type of Freight VMT or Emissions

In-Boundary Passenger In-Boundary Passenger In-Boundary Passenger In-Boundary Passenger In Boundary Origin-Destination Origin-Destination In Boundary In-boundary from Travel Model Origin-Destination Origin-Destination In-boundary from Travel Model

1198514200	0	58.6
1920989200		0.3
1920989200		58.6
1198514200		0.3

Percent Light Tru Percent Heavy Tuck Fuel Use T&D Loss Factor Percent Biofuel

31.4		0	0
1.3	8.4	0	0
31.4		0	0
1.3	8.4	0	0

CO2 On Road Average Emissions | CH4 On Road Average Emissions |

N2O On Road Average Emissions | Biofuel CO2 Fact Biofuel CH4 Fact Biofuel N2O Fact

Population (option: Data Quality: Activity Data Quality: Emissions Factor

Inventory Record	Calculator	Gpc Scope	GPC Ref Number
Residential Electricity	Emissions from Grid Electricity	Scope 2	I.1.2
Estimate Residential Fuel Oil/Ke	e Emissions from Stationary Fuel Co	Scope 1	I.1.1
Estimate Residential Propane H	Emissions from Stationary Fuel Co	Scope 1	I.1.1
Residential Nat Gas	Emissions from Stationary Fuel Co	Scope 1	I.1.1

Factor Profiles Notes

Single family homes/garages for home Apartment units Common meter for

2018 WE Energies residential apartment 4 or less

Utilized average MMBtu per household of Natural Gas and applied MMBtu per household by the number of homes on Kerosene/Fuel Oil (from US Census Data). Activity and Emissions factor noted as medium due to the use of average consumption and multiple fuel sources, respectively. Utilized average MMBtu per household of Natural Gas and applied MMBtu per household by the number of homes on LP/Propane (from US Census Data).

Single family homes/garages for home Apartment units Common meter for residential apartment 4 or less Jennifer Zierer Manager Local Affairs

CO2 (MT)	CH4 (MT)	N2O (MT)	CO2e (MT)
1,119,292.34	100.89	14.66	1,126,002.06
15,643.58	2.30	0.15	15,748.57
17,497.54	3.13	0.31	17,668.05
17,407.04	0.10	0.01	17,000.00
1,208,814.12	114.00	2.28	1,212,610.19

Tags Energy Equivalent (MMBtu Energy Cost Biogenic CO2 (MT) MMBtu per Household 24.98531062

211514	0	0	121.7697179
284698	0	0	121.7698888
22799210.2	0	0	121.7691871

CO2e per Household (MT) MMBtu per Person CO2e per Person (MT)
4.335997023 10.95960535 1.901950186

9.066532001 Infinity Infinity

6.476476867 Infinity Infinity

Infinity

7.556905485 Infinity

CO2 Emissions Factor	Biogenic CO2 Emissions	CH4 Emission	s Factor
0.172507734			1.55496E-05
73.96	0		0.010869565
61.46	0		0.010989011

0

0.005

53.02

N2O Emissions Factor	Is this a Direct Entry ReccFuel Type	Fuel Use
2.25935E-0	6 No	

0.000724638 No	Distillate Fuel Oil No	211514
0.001098901 No	Propane	284698
0.0001 No	Natural Gas	227992102

Data Source CO2 CH4 N2O Number of Households (option; Population (option; Estimation using EIA us; 1737

Estimation using EIA us; 2338

Measured usage 187233

Notation Keys Data Quality: Activity Data Quality: Emissior Electricity Energy Equivalent (MI

High High 6488360.358

Medium Medium

Medium Medium

High High

Energy Cost (\$) Electricity Used Building Area (option; CO2 lbs/MWh CO2 kg/MWh

0 1901089585 1298

CH4 lbs/GWh CH4 kg/GWh N2O lbs/GWh N2O kg/GWh
117 17

Industrial Electricity	Emissions from Grid Electricity	Scope 2
·	•	•
Milwaukee Regional Medical C	CEmissions from Stationary Fuel Combustion	Scope 1
Wiiiwadkee Regional Wedical e	Definissions from Grandhary Fuel Combustion	Осорс 1
UW-Milwaukee	Emissions from Stationary Fuel Combustion	Scope 1
Industrial Nat Gas	Emissions from Stationary Fuel Combustion	Scope 1
Valley WEPCO CS2	Emissions from Stationary Fuel Combustion at Ene	r Scope 1
Valley WEPCO CS1	Emissions from Stationary Fuel Combustion at Ene	•

Calculator

Inventory Record

Gpc Scope

GPC Ref Number Factor Profiles

1.3.2	2018 WE Energies
	•

1.3.1

1.3.1

1.3.1

1.4.4

1.4.4

Notes	CO2 (MT)
Electric Demand (CG2 and CG3) Electric Primary Gas Transportation Data	
Activity Rated Medium as only non-demand meters were counted as	
Commercial with all demand meters counted in Industrial. Commonly,	
large office buildings and other business that might have a high peak	
demand (e.g. businesses that "open" all at one time). Recommend	
working with utility to better determine buckets of commercial and	
Industrial.	1,749,588.08
Accessed EPA Flight Data and assumed Natural Gas was already	
recorded in Industrial Sector. Include Distillate Fuel Oil 2 Consumption per	
FLIGHT Data	225.91
Accessed EPA FLIGHT data and input reported fuel quantity to account for	
IPCC 5th GWP.	206.65
Electric Demand (CG2 and CG3) Electric Primary Gas Transportation	965,333.24
Assumes that 100% is sold as there was no available data from WE	
Energies on the amount used on site.	154.419.53

192,026.88

CH4 (MT)	N2O (MT)		CO2e (MT)	Tags
157.71		22.91	1,760,076.18	
0.01		0.00	226.74	
0.01		0.00	207.41	
18.21		1.82	966,325.52	
2.91		0.29	154,578.26	
3.62		0.36	192,224.27	

Electricity Energy Equivalent (MI CO2 Emissions Factor CH4 Emissions Factor

1.55496E-05	0.172507734	10142084.9
2.89855E-06	0.07396	
2.89855E-06 0.000001	0.07396 0.05302	
0.000001 0.000001	0.05302 0.05302	

2.25935E-06 No

N2O Emissions Factor

2971630877

7.24638E-07 No

7.24638E-07 No 0.0000001 No

> 0.0000001 No 0.0000001 No

Notation Keys Data Quality: Activity Data Quality: Emissior CO2 lbs/MWh CO2 kg/MWh

High High 1298

High High

High High

CH4 lbs/GWh CH4 kg/GWh N2O lbs/GWh N2O kg/GWh Energy Equivalent (MMBtu

117 17

3054.492

2794.086 18206964.1

Distillate Fuel Oil No. 22134

Distillate Fuel Oil No 20247 Natural Gas 182069641

Natural Gas 2912477 2912477 0 Natural Gas 3621782 3621782 0 Total Useful Output (MME System Efficiency Emissions per Unit Output (MT CO2e / MMBI

0 0 Infinity 0 Infinity

Biogenic CO2 Emissions Do you wish to use Custom or Default Emissions Energy Density

0 Use Default

0 Use Default

Electricity Generation Electricity Generation

EPA Mandatory Reporting EPA Mandatory Reporting

Energy Use Attribution Cooling Output Electrical Ou Heat Output

Inventory Record	Calculator	Gpc Scope	GPC Ref Number
Commercial Electricity	Emissions from Grid Electricity	Scope 2	1.2.2
Commercial Nat Gas	Emissions from Stationary Fuel Co	Scope 1	1.2.1

Factor Profiles	Notes	CO2 (MT)
	Common meter for residential service > 4 units Electric non demand electric meters commercial (CG1 or CG6) All Commercial gas (except Transportation) Data Activity Rated Medium as only non-demand meters were counted as Commercial with all demand meters counted in Industrial. Commonly, large office buildings and other business that might have a high peak demand (e.g. businesses that "open" all at one time). Recommend working with utility to better	
2018 WE Energies	determine buckets of commercial and Industrial. Common meter for residential service > 4 units Electric non demand electric meters commercial (CG1 or CG6) All Commercial gas (except Transportation)	279,376.70 486,174.99
	Tanoportation)	400,174.99

CH4 (MT) N2O (MT) CO2e (MT) Tags

25.18 3.66 281,051.46

45.85 0.92 487,701.73

Electricity Energy Equivalent (MI MMBtu per 1,000 SQFT Floor Area

1619502.474 Infinity

CO2e per 1,000 SQFT Floor Area (MT)) MMBTU per Employee	CO2e per Employee (MT)
Infinity	Infinity	Infinity
		Infinity
		y

0.172507734

1.55496E-05

Infinity

Infinity

MMBtu per Establishm CO2e per Establishme CO2 Emissions Factor CH4 Emissions Factor

N2O Emissions Factor

Is this a Direct Entry Recc Electricity Used CO2 CH4 N2O

2.25935E-06 No

474514225

No

Commercial Floor Area (c Commercial Workforce SIze Number of Commercial Establishment

Notation Keys Data Quality: Activity Data Quality: Emissic CO2 lbs/MWh CO2 kg/MWh

High High 1298

High

117 17

9169652.7

MMBtu per 1000 SQFT Floor Are	a MMBtu per Busines	s:CO2e per 1000 SQFT Floor Area (MT
Infinity	Infinity	Infinity

Infinity Infinity 53.02

0.005

0.0001 Natural Gas

91696527 Measured usage

Commercial Workforce Size Data Quality: Emissions Factor

High

Calculator	Gpc Scope
Fugitive Emissions from Natural Gas Distribution	Scope 1
	Fugitive Emissions from Natural

GPC Ref Number Factor Pro Notes

Compared 0.3% assumed leakage to reported fugitive emissions in EPA FLIGHT for Wisconsin Electric Power and Wisconsin Gas Company. EPA FLIGHT estimated leakage for entire system, beyond City of Milwaukee. Utilized 0.3% assumed leakage calculation based on total consumed Natural Gas for City of Milwaukee.

1.8.1

CO2 (MT) CH4 (MT) N2O (MT) CO2e (MT) Tags

33.27 3,107.83 87,052.59

Natural Gas Released (I Natural Gas Used (M CH4 Emissions Factor

3327.444014 50175827 6.19388E-05

\sim			
ניו זי ז	⊢m:	ccionc	- Lactor
$\cup \cup \angle$		ออเบเเอ	Factor

Is this a Direct Entry Recc Quantity of Natural Gas

6.63157E-07

501758270

Nature Gas Energy Densi Leakage Ra Natural Gas Del Natural Gas % Cl Natrual Gas % Cl

1028 0.3 0.8 93.4 1

Natural Gas Rele Notation Keys Data Quality: Activit Data Quality: Emissions Factor