
January 3, 2020

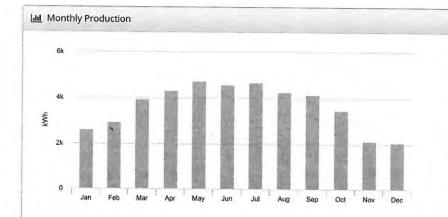
First Unitarian Church 1342 N Astor Street Milwaukee, WI 53202

STRUCTURAL CALCULATIONS FOR Solar Panel Arrays – Upper Church Roof & Apartments Flat Roof Structural Report

Provided for:

Arch Electric, Inc. | The Solar + Energy Storage Experts Phone: 920-545-4429 Mobile: 920-321-8914 1237 Pilgrim Road, Plymouth, WI 53073 2025 N. Summit Avenue, Suite 100A, Milwaukee, WI 53202

STRUCTURAL CONSULT		SHEET NO		OF
169 N10815 Redwood Lane ermantown, WI 53022	blodgetteng@wi.rr.com Tel/Fax: 262.293.9923	CALCULATED BY_	MEB	_DATE_1/2/20
1. GABLE Roo	F: 1890's	242 -	0013 - 196	6
· FULL 2" × 5.		516" 0/c	CONSID ONED	R O INSULATION A WARM ROOF F = 1.0
SHINGLED ROOF	-			
DEAD LOADS:		N 6	C	Bann E card
SHINGLE. OSB ;				REDUCE SNOW
	Z PS: 2,5		$R_{LL} = 20$	
	FULL: 1.6		SNOJ ROES	NOT CONTROL
+ PLASTON				
140 310		146 00.0	-	Ģ
SPAN OF RAFTI	OF 20 psf GOV	USE 20psF	5	5
SPAN OF RAFTI SPANS BETWEEN R	OF 20 psf GOV ENS: OF BEAMS ING ROUGH SAW 2"* 5" IN N (ACTUAL =	W NODEL 2" x 5.5")	6	5' + A
SPAN OF RAFTI SPANS BETWEEN R	OF 20 psf GOV ENS: OOF BEAMS ING ROUGH SAW 2"* 5" IN N	W NODEL 2" x 5.5")	6	5' + A
SPAN OF RAFTI SPANS BETWEEN R Z D MODEL US	OF 20 psf GOV ENS: OGF BEAMS ING ROUGH SAW 2" * 5" IN N (ACTUAL = " PRE-1944 : 48.5#	ADOLL 2" × 5.5") JOISTS Z PSF =	6	F MODULES



Zak 11.21 First Unitarian Society, 1342 N Astor St, Milwaukee, WI 53202

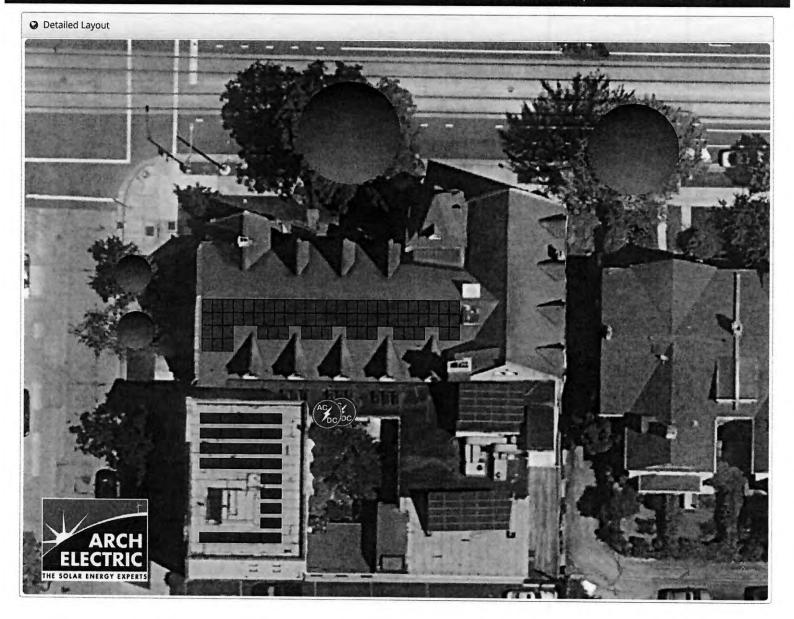
📕 Report	
Project Name	First Unitarian Society
Project Address	1342 N Astor St, Milwaukee, WI 53202
Prepared By	Dan Steinhardt dan@archelec.com

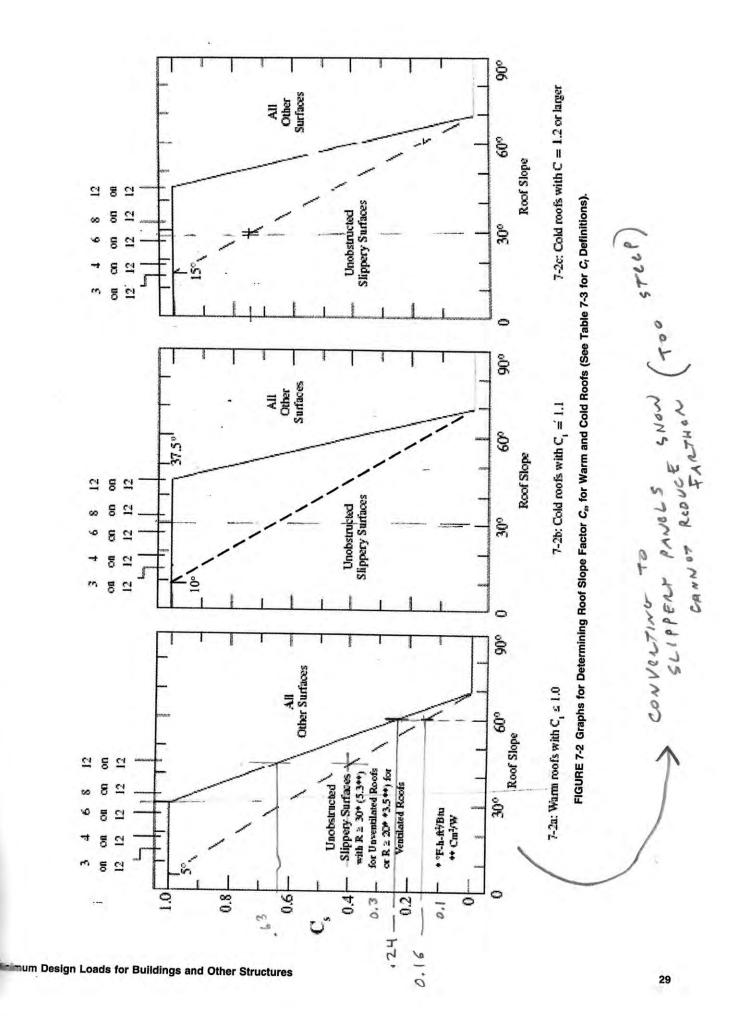
Design	Zak 11.21
Module DC Nameplate	34.8 kW
nverter AC Nameplate	28.8 kW Load Ratio: 1.21
nnual roduction	44.04 MWh
erformance atio	80.5%
Wh/kWp	1,266.3
/eather Dataset	TMY, MILWAUKEE MITCHELL INTL AP, NSRDB (tmy3, I)
imulator ersion	a721496c3a-208a66d7f1-b582af6697- 77987d21ec

Sources of System Loss

	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,406.8	
	POA Irradiance	1,572.2	11.8%
Irradiance	Shaded Irradiance	1,559.1	-0.8%
(kWh/m ²)	Irradiance after Reflection	1,510.8	-3.1%
	Irradiance after Soiling	1,401.1	-7.3%
	Total Collector Irradiance	1,401.0	0.0%
	Nameplate	48,774.1	
-	Output at Irradiance Levels	48,337.5	-0.9%
	Output at Cell Temperature Derate	46,429.0	-3.9%
	Output After Mismatch	46,392.7	-0.1%
Energy (kWh)	Optimizer Output	45,742.5	-1.4%
	Optimal DC Output	45,650.3	-0.2%
	Constrained DC Output	45,631.8	0.0%
	Inverter Output	44,262.3	-3.0%
	Energy to Grid	44,041.0	-0.5%
Temperature	Metrics		
	Avg. Operating Ambient Temp		10.8 °C
	Avg. Operating Cell Temp		22.8 °C
Simulation Me	trics		
	Op	erating Hours	4687
		Solved Hours	4687

ARCH

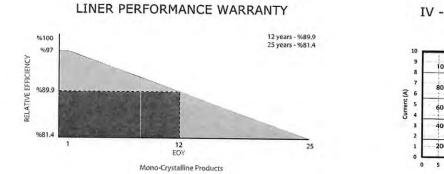

Annual	Production	Report produced	by Dan Steinhardt
--------	------------	-----------------	-------------------

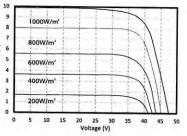

Description	Condi	ition Se	et 1									
Weather Dataset	TMY,	TMY, MILWAUKEE MITCHELL INTL AP, NSRDB (tmy3, I)					1)					
Solar Angle Location	Meteo	Meteo Lat/Lng										
Transposition Model	Perez	Perez Model										
Temperature Model	Sandi	Sandia Model										
Temperature Model	Rack Type			a		b		1	Temp	erature	Delta	
Parameters	Fixed	Tilt		-3.5	6	-0.0	75	11	3°C			last sea
	Flush Mount		-2.8	1	-0.0	455		0°C				
Soiling (%)	J	F	м	A	м	1	J	A	s	0	N	D
	15	15	5	5	5	5	5	5	5	5	15	15
Irradiation Variance	5%											
Cell Temperature Spread	4° C											
Module Binning Range	-2.5%	to 2.59	6									
AC System Derate	0.50%	0.50%										
Module	Modu	Module				Uploaded By		Characterization				
Characterizations		PS-M72 370W Amman (Philadelphia Solar)				Folsom Labs		1	Spec Sheet Characterization, PAN			
Component	Device	e				Uplo	aded	Ву	C	haracte	erizatio	n
Characterizations	SE14.	4KUS (SolarEd	dge)		Fols	om La	bs	C	EC		
	P860	(SolarE	dge)			Fols	om La	bs	S	heet		

🖨 Compo	onents	
Component	Name	Count
Inverters	SE14.4KUS (SolarEdge)	2 (28.8 kW)
Strings	10 AWG (Copper)	6 (631.3 ft)
Optimizers	P860 (SolarEdge)	48 (41.3 kW)
Module	Philadelphia Solar, PS-M72 370W Amman (370W)	94 (34.8 kW)

Wiring 2	Zones								
Description		Combiner Poles		Str	ing Size	Stringing !	Strategy		
Wiring Zone 12		7-17			Along Racking				
III Field Se	oments								
	Billenes								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
	Racking	Orientation Portrait (Vertical)	Tilt 50°	Azimuth 180°	Intrarow Spacing 0.0 ft	Frame Size	Frames 70	Modules 70	Power 25.9 kW
Description	Racking Flush Mount			180°					

-





PS-M72 Dimensions

Philadelphia Solars' Mono-Crystalline modules with power up to 385 Wp are produced using the state-of-the-art (automated) robotic production lines. These modules are suitable to be used for most electrical power applications and have excellent durability to prevailing weather conditions.

IV - CURVE M72 - 370 W

Certificates

Bankability Report DNV GL

ELECTRICAL CHARACTERISTICS	370W	375W	380W	385W
Characteristics (STC)	STC	STC	STC	STC
Open Circuit Voltage - Voc (V)	48.00	48.30	48.63	49.00
Short Circuit Current - Isc (A)	9.90	9.95	9.98	10.01
Maximum Power Voltage - Vmpp (V)	38.90	39.23	39.61	40.02
Maximum Power Current - Impp (A)	9.52	9.57	9.60	9.63
Maximum Power - Pmax (W)	370	375	380	385
Module Efficiency - η' (%)	19.0	19.2	19.5	19.8

Values at Standard Test Conditions STC (Air Mass AM1.5, Irradiance 1000W/m², Cell Temperature °25C).

MATERIAL CHARACTERISTIC	S	PACKAGING	
Characteristics	Value	Physical Characteristics	Value
Cells per Module	72	Module Dimensions (mm)	1968 x 990 x 40
Cell Type	Grade A - Mono-Crystalline Silicon (PERC), 156.75x156.75mm	Module Weight (kg)	22
Front Surface	Anti-Reflective Coated Tempered 3.2mm Glass	Pallet Dimensions W.D.H (mm)	2010 x 1140 x 1130
Encapsulant	PID Free EVA	Modules per Pallet	27
Back Cover	Backsheet	Container Capacity	Value
Frame	Anodized Aluminum	20 Feet Container	270 Modules
Junction Box	IP68, 3 Bypass Diodes	40 Feet High-Cube Container	594 Modules
Cable and Connector	1.2m Solar Cables with MC4 interconnection		
Fire Classification	Spread of flame : A / Burning brand : C		

THERMAL CHARACTERISTICS		OPERATING CONDITIONS		
Characteristics	Value	21、11月1日中午,1965年1月1日	Concession and the	
Voltage Temperature Coefficient (%/°C)	- 0.291	Maximum Sytem Voltage - Vmax (V)	1000/1500	
Current Temperature Coefficient (%/°C)	+ 0.033	Maximum Series Fuse (A)	15	
Power Temperature Coefficient (%/°C)	- 0.39	Operating Temperature Range (°C)	IEC: - 40 to + 85	
NOCT (°C)	45 <u>+</u> 2		UL: - 40 to + 90	

WARRANTY			
Product	12 Years		
Power Output	12 Years; 89.9 % of Power Output 25 Years; 81.4 % of Power Output		

FEATURE

Positive power tolerance up to %3 extra output.

Excellent low light performance.

Salt mist and ammonia resistant to endure coastal and agricultural environments.

Excellent high mechanical loads, certified to withstand high wind load (2400 pa) and snow load (5400 pa).

In-line and post EL (Electroluminescence) machines.

BENEFITS

- Outstanding technical support.
- Pre and after sales-service.
- 12 years warranty on material and workmanship.
- 25 years linear performance warranty.
- Marketing support to official distributors.
- Customized mounting solutions.

APPLICATIONS

• Power measuring tolerance: \pm %3, other measurements tolerances: \pm %5

- Datasheet is subjected to changes without prior notice, always obtain the most recent version of the datasheet.
- Caution: For professional use only, the installation and handling of PV modules and cleaning modules require professional skills and should only be performed by qualified professionals, please read the Installation and Operation Manual before using the modules, also Cleaning Guidelines.

BLODGETT ENGINEERING LLC JOB STRUCTURAL CONSULTING ENGINEERS OF SHEET NO. W169 N10815 Redwood Lane blodgetteng@wi.rr.com Germantown, WI 53022 CALCULATED BY DATE Tel/Fax: 262.293.9923 ANCHORAGE: USE: AWC 5/6 \$ LAG SCREWS D 266#/LAG UPLIFT = UPLIFT PRESSURES: ASCE 7-10 WIND ASD (180 1609, 2.1) ULTIMATE MID ZONE = 17.5 PSF => 13.55 PSF END ZONE = - 25.2 15F => 19.52 psF 7 USE 2.3 POF DL 7. 2' MIN. ARANEL = 20.97 SF 15"0/6 32" 0/6 END LAGS ZONE WORST CASE: 3.848' , 3,248 FULL PANEL AT EDGE ZONE P = 19.52 psf × 6.456'= 126.02 #== RAIL LOADS (2) Sho & LAG SCREWS BIVE : 266#/LAG RAIL SPACING = 256# x FT = 2.11 /LAC OK SPACING = 1.33' 0/0 . USE THAT ATTACH EVERY 16"OL AT END ZONES P= 13.55 × 6.456 = 87.5 #/FT 216 = 3.04 => USE 2.66 O/C AT MIDDLE ZONES

Engineering Data

AWC Lag Pull-out Chart

Lag pull-out (withdrawal) capacities (lbs) in typical roof lumber (ASD)

Material	Specific Gravity	Lag Screw Specifications*
Douglas Fir, Larch	0.50	266
Douglas Fir, South	0.46	235
Engelmann Spruce, Lodgepole Pine (MSR 1650 f & higher)	0.46	235
Hem, Fir, Redwood (close grain)	0.43	212
Hem, Fir (North)	0.46	235
Southern Pine	0.55	307
Spruce, Pine, Fir	0.42	205
Spruce Pine Fir	0.50	266
(E of 2 million psi and higher grades of MSR and N	IEL)	

Sources: American Wood Council, NDS 2005, Table 11.2A, 11.3.2A.

Notes: (1) Thread must be embedded in the side grain of a rafter or other structural member integral with the building structure. (2) Lag bolts must be located in the middle third of the structural member.

- (3) These values are not valid for wet services.
- (4) This table does not include shear capacities. If necessary, contact a local engineer to specify lag bolt size with regard to shear forces.
- (5) Install lag bolts with head and washer flush to surface (no gap). Do not over-torque.
- (6) Withdrawal design values for lag screw connections shall be multiplied by applicable adjustment factors if necessary. See Table 10.3.1 in the American Wood Council NDS for Wood Construction.

*5/16" shaft, per inch thread depth (Use flat washers with lag screws).

Blodgett Engineering, LLC

JOB TITLE Arch Electric - Astor Apartments

W169 N 10815 Redwood Lane	Contraction Provide State	
Germantown, WI	JOB NO.	SHEET NO.
262-293-9923	CALCULATED BY	DATE
	CHECKED BY	DATE

Wind Loads - MWFRS h≤60' (Low-rise Buildings) except for open buildings

Kz = Kh (case 1) =	0.70	Edge Strip (a) =
Base pressure (qh) =	20.2 psf	End Zone (2a) =
GCpi =	+/-0.18	Zone 2 length =
		zone z lengur -

Wind Pressure Coefficients

	C.	ASE A			CASE B	
Surface	GCpf	θ = 45 deg w/-GCpi	w/+GCpi	GCpf	w/-GCpi	w/+GCpi
1	0.56	0.74	0.38	-0.45	-0.27	-0.63
2	0.21	0.39	0.03	-0.69	-0.51	-0.87
3	-0.43	-0.25	-0.61	-0.37	-0.19	-0.55
4	-0.37	-0.19	-0.55	-0.45	-0.27	-0.63
5				0.40	0.58	0.22
6	Sec. 10			-0.29	-0.11	-0.47
1E	0.69	0.87	0.51	-0.48	-0.30	-0.66
2E	0.27	0.45	0.09	-1.07	-0.89	-1.25
3E	-0.53	-0.35	-0.71	-0.53	-0.35	-0.71
4E	-0.48	-0.30	-0.66	-0.48	-0.30	-0.66
5E				0.61	0.79	0.43
6E				-0.43	-0.25	-0.61

Ulti	mate Wind Sur	face Pressures (psf)			
1 2 3 4 5 6	14.9 7.9 -5.0 -3.8	7.7 0.6 -12.3 -11.1	-5.4 -10.3 -3.8 -5.4 11.7 -2.2	-12.7 -17.5 -11.1 -12.7 4.4	× 70.6 = 13.55 15F
1E 2E 3E 4E 5E 6E	17.5 9.1 -7.1 -6.0	10.3 1.8 -14.3 -13.3	-2.2 -6.0 -17.9 -7.1 -6.0 15.9 -5.0	-9.5 -13.3 -25.2 -14.3 -13.3 8.7 -12.3	× 10.6 = 19.52 psf

Parapet

Windward parapet =32.1 psf(GCpn = +1.5)Leeward parapet =-21.4 psf(GCpn = -1.0)

Horizontal MWFRS Simple Diaphragm Pressures (psf)

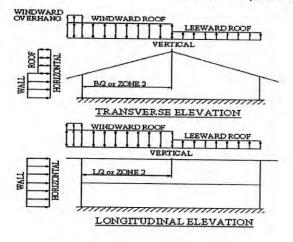
Transverse direction	on (normal to L)
Interior Zone: Wall	18.8 psf
Roof	12.9 psf
End Zone: Wall	23.6 psf
Roof	16.1 psf

Longitudinal direction (parallel to L)

Interior Zone:	Wall	13.9 psf
End Zanas		

End Zone: Wall 21.0 psf

Windward roof


overhangs =

14.1 psf (upward) add to windward roof pressure

3.6 ft

7.2 ft 18.0 ft

ASD_

BLODGETT ENGINEERING LLC JOB STRUCTURAL CONSULTING ENGINEERS SHEET NO. OF W169 N10815 Redwood Lane blodgetteng@wi.rr.com Germantown, WI 53022 CALCULATED BY Tel/Fax: 262.293.9923 DATE EACH ADDS: 129.79 # TO JUIST CHECK W/ DRIFT JOIST 16.6' SOLAR : AND +29.5 21 PSF BALLAST CAPACITY OF 2 JOISTS 48.84# 4000 346.58-129.79-48.84=167.9×2=335.90 # 10.5 BLOCKS 1 32 10,5 > 9.0 BLOCKS >ok XEAST / WEST ROW OF ARRAY WORKS W/ SNOW PRIFTS FROM EAST + WEST STAY OUT OF NORTH AND SOUTH DMFT ZONE *

Blodgett Engineering, LLC

W169 N 10815 Redwood Lane Germantown, WI

262-293-9923

JOB TITLE Arch Electric - Astor Apartments

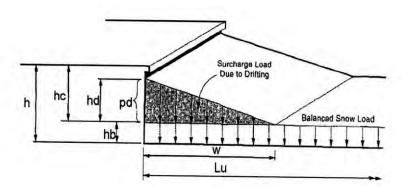
JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Snow Loads : ASCE 7-10

Million also second Company

.....

.


Destat	and the second	
Roof sl		1.2 deg
Horiz. eave to ridge		10.0 ft
Roof length parallel to	ridge (L) =	10.0 ft
Type of Roof	N	Ionoslope
Ground Snow Load	Pg =	30.0 psf
Risk Category	5 m	H
Importance Factor	1 =	1.0
Thermal Factor	Ct =	1.00
Exposure Factor	Ce =	1.0
Pf = 0.7*Ce*Ct*I*Pg		21.0 psf
Unobstructed Slippery Surfa	ace	no
Sloped-roof Factor	Cs =	1.00
Balanced Snow Load		21.0 psf
Rain on Snow Surcharge Ar	ngle	0.20 deg
Code Maximum Rain Surch	arge	5.0 psf
Rain on Snow Surcharge	-	0.0 psf
Ps plus rain surcharge	=	21.0 psf
Minimum Snow Load	Pm =	20.0 psf
Uniform Roof Design Snov	v Load =	21.0 psf

Nominal Snow Forces

Near ground level surface balanced snow load = 30.0 psf

NOTE: Alternate spans of continuous beams shall be loaded with half the design roof snow load so as to produce the greatest possible effect - see code for loading diagrams and exceptions for gable roofs..

	Upwind fetch	lu =	50.0 ft
	Projection height	h =	2.0 ft
	Snow density	g =	17.9 pcf
	Balanced snow height	hb =	1.17 ft
		hd =	1.86 ft
		hc =	0.83 ft
	hc/hb >0.2 = 0.7	Therefore, d	lesign for drif
	Drift height (hc)		0.83 ft
	Drift width	w =	6.61 ft
	Surcharge load:	$pd = \gamma^*hd =$	14.8 psf
	Balanced Snow load:		21.0 psf
Windw	ward Snow Drifte 2	-	35.8 psf
Windy	vard Snow Drifts 2 - Age		35.8 psf rapets, etc
Windw	Upwind fetch	lu =	35.8 psf rapets, etc 40.0 ft
Windw	Upwind fetch Projection height	lu = h =	35.8 psf rapets, etc 40.0 ft 10.0 ft
Windw	Upwind fetch Projection height Snow density	lu = h = g =	35.8 psf rapets, etc 40.0 ft 10.0 ft 17.9 pcf
Windw	Upwind fetch Projection height	lu = h = g = hb =	35.8 psf rapets, etc 40.0 ft 10.0 ft
Windw	Upwind fetch Projection height Snow density	lu = h = g =	35.8 psf rapets, etc 40.0 ft 10.0 ft 17.9 pcf
Windv	Upwind fetch Projection height Snow density Balanced snow height	lu = h = g = hb = hd = hc =	35.8 psf rapets, etc 40.0 ft 10.0 ft 17.9 pcf 1.17 ft 1.65 ft 8.83 ft
Windw	Upwind fetch Projection height Snow density Balanced snow height hc/hb >0.2 = 7.5	lu = h = g = hb = hd = hc =	35.8 psf rapets, etc 40.0 ft 10.0 ft 17.9 pcf 1.17 ft 1.65 ft
Windw	Upwind fetch Projection height Snow density Balanced snow height hc/hb >0.2 = 7.5 Drift height (hd)	lu = h = g = hb = hd = hc =	35.8 psf rapets, etc 40.0 ft 10.0 ft 17.9 pcf 1.17 ft 1.65 ft 8.83 ft
Windv	Upwind fetch Projection height Snow density Balanced snow height hc/hb >0.2 = 7.5 Drift height (hd) Drift width	lu = h = g = hb = hd = hc = Therefore, d = w =	35.8 psf rapets, etc 40.0 ft 10.0 ft 17.9 pcf 1.17 ft 1.65 ft 8.83 ft esign for drif
Windv	Upwind fetch Projection height Snow density Balanced snow height hc/hb >0.2 = 7.5 Drift height (hd)	lu = h = g = hb = hd = hc = Therefore, d	35.8 psf rapets, etc 40.0 ft 10.0 ft 17.9 pcf 1.17 ft 1.65 ft 8.83 ft esign for driff 1.65 ft
Windv	Upwind fetch Projection height Snow density Balanced snow height hc/hb >0.2 = 7.5 Drift height (hd) Drift width	lu = h = g = hb = hd = hc = Therefore, d = w =	35.8 psf rapets, etc 40.0 ft 17.9 pcf 1.17 ft 1.65 ft 8.83 ft esign for drif 1.65 ft 6.59 ft

Blodgett	Engineering,	LLC
----------	--------------	-----

W169 N 10815 Redwood Lane Germantown, WI 262-293-9923

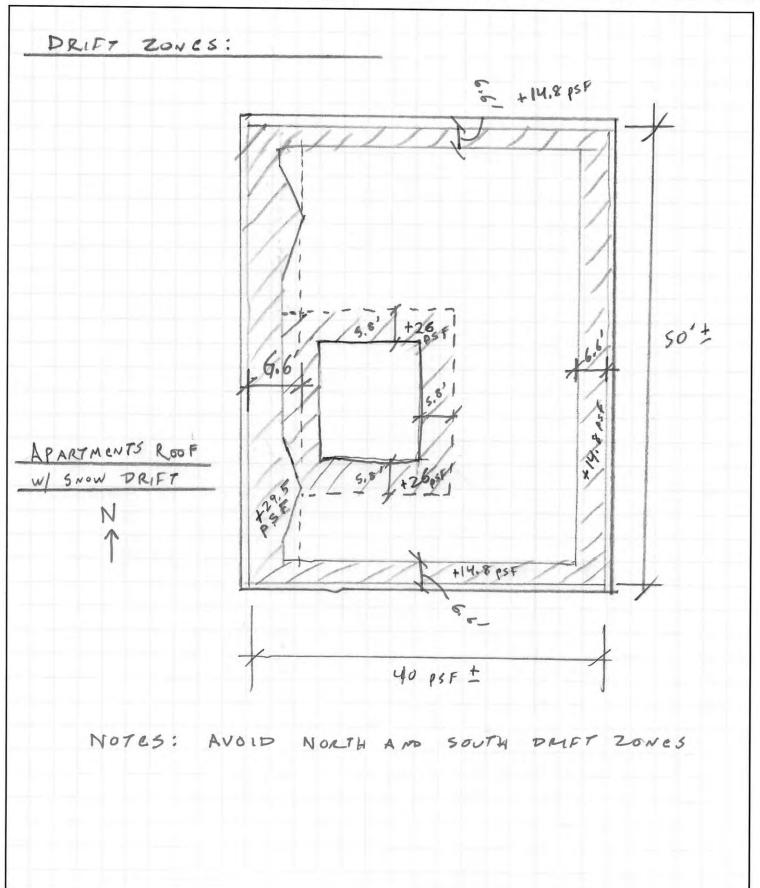
JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

				CHECKED BY	DATE
now Loads - from adja	cent buil	ding or roof:	1	ASCE 7-10	Nominal Snow Force
		Higher Roof	Lower Roof		
	slope =	1.2 deg	0.25 / 12 =	1.2 deg	
Horiz. eave to ride		10.0 ft	40.0 ft		
Roof length parallel t		10.0 ft	50.0 ft		
Projection height (ro			10.0 ft		
Building sep	aration s =		0.0 ft		
Type of Roof		Monoslope	Monoslope		
Ground Snow Load	Pg =	30.0 psf	30.0 psf		
Risk Category	=	н	11		
Importance Factor	1 =	1.0	1.0		
Thermal Factor	Ct =	1.00			
			1.00		
Exposure Factor	Ce =	1.0	1.0		
Pf = 0.7*Ce*Ct*I*Pg	=	21.0 psf	21.0 psf		
Unobstructed Slippery Su	urface	no	no		
Sloped-roof Factor	Cs =	1.00	1.00		
Balanced Snow Load	Ps =	21.0 psf	21.0 psf		
	1996				
Rain on Snow Surcharge		0.20 deg	0.80 deg		
Code Maximum Rain Sur	100 C T T T T T T T T T T T T T T T T T T	5.0 psf	5.0 psf		
Rain on Snow Surcharge		0.0 psf	0.0 psf		OTE: Alternate spans of continuous beams and
Ps plus rain surcharge Minimum Snow Load	Pm =	21.0 psf 20.0 psf	21.0 psf 20.0 psf		her areas shall be loaded with half the design of snow load so as to produce the greatest
Willing Chow Ford	. m =	20.0 psi	20.0 psi		ossible effect - see code.
Uniform Roof Design Sr Building Official M		21.0 psf	21.0 psf	p	
Building Official M	linimųm =		21.0 psf	p	
Building Official M	linimųm = djacent high	er roof	21.0 psf		
Building Official M .eeward Snow Drifts - from ac Upper roof length	linimųm = djacent high lu =	<u>er roof</u> 10.0 ft			
Building Official M <u>eeward Snow Drifts - from ac</u> Upper roof length Snow density	linimųm = <u>djacent high</u> lu = Y =	<u>er roof</u> 10.0 ft 17.9 pcf			
Building Official M .eeward Snow Drifts - from ac Upper roof length	linimųm = <u>djacent high</u> lu = Y = hb =	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft			Surcharge Load
Building Official M .eeward Snow Drifts - from ad Upper roof length Snow density	linimųm = d <u>jacent high</u> lu = Y = hb = hc =	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft			
Building Official M <u>eeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height	linimųm = d <u>jacent high</u> lu = Y = hb = hc =	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft		Lu	Surcharge Load
Building Official M <u>eeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5	linimųm = djacent high lu = Y = hb = hc = Therefore,	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift			Surcharge Load Due to Drifting
Building Official M <u>eeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor	linimųm = djacent high lu = Y = hb = hc = Therefore, =	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00		Lu hd pd{	Surcharge Load
Building Official M <u>eeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd)	linimųm = djacent high lu = Y = hb = hc = Therefore, = =	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft		Lu	Surcharge Load Due to Drifting
Building Official M <u>Leeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd) Drift width	linimųm = djacent high lu = Y = hb = hc = Therefore, = w =	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft 5.74 ft		Lu hd pd{	Surcharge Load Due to Drifting
Building Official M <u>Leeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd) Drift width Surcharge load:	linimųm = <u>djacent high</u> lu = Y = hb = hc = Therefore, = w = pd = y*hd =	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft 5.74 ft 25.7 psf 21.0 psf		Lu hd pd{	Surcharge Load Due to Drifting
Building Official M Leeward Snow Drifts - from ac Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd) Drift width Surcharge load: Balanced Snow load:	linimųm = <u>djacent high</u> lu = Y = hb = hc = Therefore, = w = pd = y*hd = =	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft 5.74 ft 25.7 psf 21.0 psf 46.7 psf Wind		Lu hd pd{	Surcharge Load Due to Drifting
Building Official M Leeward Snow Drifts - from ac Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd) Drift width Surcharge load: Balanced Snow load:	linimųm = <u>djacent high</u> lu = Y = hb = hc = Therefore, = w = pd = y*hd = =	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft 5.74 ft 25.7 psf 21.0 psf 46.7 psf Wind		Lu hd pd{	Surcharge Load Due to Drifting
Building Official M <u>seeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd) Drift width Surcharge load: Balanced Snow load: Windward Snow Drifts - from	linimum = <u>djacent high</u> lu = Y = hb = hc = Therefore, = w = pd = y*hd = low roof aga	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft 5.74 ft 25.7 psf 21.0 psf 46.7 psf Winc ainst high roof		Lu hd pd{	Surcharge Load Due to Drifting
Building Official M <u>seeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd) Drift width Surcharge load: Balanced Snow load: <u>Vindward Snow Drifts - from</u> Lower roof length Adj structure factor Drift height	linimum = <u>djacent high</u> lu = Y = hb = hc = Therefore, = w = pd = y*hd = = <u>low roof aga</u> lu =	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft 5.74 ft 25.7 psf 21.0 psf 46.7 psf Wind ainst high roof 32.0 ft 1.00 1.45 ft		Lu hd pd{	Surcharge Load Due to Drifting
Building Official M <u>eeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd) Drift width Surcharge load: Balanced Snow load: <u>Vindward Snow Drifts - from</u> Lower roof length Adj structure factor Drift height Drift width	linimum = <u>diacent high</u> lu = Y = hb = hc = Therefore, = w = pd = y*hd = = low roof aga lu = = hd = w =	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft 5.74 ft 25.7 psf 21.0 psf 46.7 psf Wind ainst high roof 32.0 ft 1.00 1.45 ft 5.80 ft		Lu hd pd{	Surcharge Load Due to Drifting
Building Official M <u>Leeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd) Drift width Surcharge load: Balanced Snow load: <u>Windward Snow Drifts - from</u> Lower roof length Adj structure factor Drift height Drift width Surcharge load:	linimum = <u>djacent high</u> lu = Y = hb = hc = Therefore, = w = pd = y*hd = = low roof aga lu = hd =	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft 5.74 ft 25.7 psf 21.0 psf 46.7 psf Winc ainst high roof 32.0 ft 1.00 1.45 ft 5.80 ft 26.0 psf		Lu hd pd{	Surcharge Load Due to Drifting
Building Official M <u>Leeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd) Drift width Surcharge load: Balanced Snow load: <u>Windward Snow Drifts - from</u> Lower roof length Adj structure factor Drift height Drift width	linimum = <u>diacent high</u> lu = Y = hb = hc = Therefore, = w = pd = y*hd = = low roof aga lu = = hd = w =	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft 5.74 ft 25.7 psf 21.0 psf 46.7 psf Wind ainst high roof 32.0 ft 1.00 1.45 ft 5.80 ft 26.0 psf 21.0 psf		Lu hd pd{	Surcharge Load Due to Drifting
Building Official M <u>eeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd) Drift width Surcharge load: Balanced Snow load: <u>Windward Snow Drifts - from</u> Lower roof length Adj structure factor Drift height Drift width Surcharge load: Balanced Snow load:	linimųm = <u>djacent high</u> lu = Y = hb = hc = Therefore, = w = pd = γ*hd = = hd = w = pd = γ*hd = = hd = w = pd = γ*hd =	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft 5.74 ft 25.7 psf 21.0 psf 46.7 psf Winc ainst high roof 32.0 ft 1.00 1.45 ft 5.80 ft 26.0 psf	Iward drift controls	Lu hd pd hb	Surcharge Load Due to Drifting
Building Official M <u>eeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd) Drift width Surcharge load: Balanced Snow load: <u>Vindward Snow Drifts - from</u> Lower roof length Adj structure factor Drift height Drift width Surcharge load: Balanced Snow load: Balanced Snow load:	linimųm = <u>diacent high</u> lu = Y = hb = hc = Therefore, = w = pd = γ*hd = = low roof aga lu = w = pd = γ*hd = = pd = γ*hd = = bd = y = pd = γ*hd = = bd = y = pd = γ*hd = = bd = y = bd = y = bd = y*hd = = bd = y = bd = bd = y = bd = y = bd = y = bd = y = bd = y = bd = y = bd = bd = y = bd	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft 5.74 ft 25.7 psf 21.0 psf 46.7 psf Winc ainst high roof 32.0 ft 1.00 1.45 ft 5.80 ft 26.0 psf 47.0 psf		Lu hd pd hb	Surcharge Load Due to Drifting
Building Official M <u>eeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd) Drift width Surcharge load: Balanced Snow load: <u>Windward Snow Drifts - from</u> Lower roof length Adj structure factor Drift height Drift width Surcharge load: Balanced Snow load: Balanced Snow load: Balanced Snow load:	linimum = <u>diacent high</u> lu = Y = hb = hc = Therefore, = w = pd = y*hd = = low roof aga lu = w = pd = y*hd = = hd = w = pd = y*hd = = bf = 0.4 Pf W =	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft 5.74 ft 25.7 psf 21.0 psf 46.7 psf Winc ainst high roof 32.0 ft 1.00 1.45 ft 5.80 ft 26.0 psf 47.0 psf 0.0 plf	Iward drift controls	Lu hd pd hb	Surcharge Load Due to Drifting
Building Official M <u>eeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd) Drift width Surcharge load: Balanced Snow load: <u>Vindward Snow Drifts - from</u> Lower roof length Adj structure factor Drift height Drift width Surcharge load: Balanced Snow load: Balanced Snow load:	linimųm = <u>djacent high</u> lu = Y = hb = hc = Therefore, = w = pd = γ*hd = = hd = w = pd = γ*hd = = pd = γ*hd = = (b) (b) (b) (b) (b) (b) (b) (b) (b) (b)	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft 5.74 ft 25.7 psf 21.0 psf 46.7 psf Winc ainst high roof 32.0 ft 1.00 1.45 ft 5.80 ft 26.0 psf 47.0 psf 0.0 plf 0.0 psf	Iward drift controls	Lu hd pd hb	Surcharge Load Due to Drifting Balanced Snow Load
Building Official M Deeward Snow Drifts - from ac Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd) Drift width Surcharge load: Balanced Snow load: Windward Snow Drifts - from Lower roof length Adj structure factor Drift height Drift width Surcharge load: Balanced Snow load: Sliding Snow - onto lower rooc Sliding snow - Distributed or	linimum = <u>djacent high</u> lu = Y = hb = hc = Therefore, = w = pd = y*hd = low roof aga lu = bd = y*hd = = pd = y*hd = = hd = = pd = y*hd = = hd = = pd = y*hd = = hd = = bd = = bd = = bd = = = bd = = = bd = = = = = = = = = = = = = =	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft 5.74 ft 25.7 psf 21.0 psf 46.7 psf Winc <u>ainst high roof</u> 32.0 ft 1.00 1.45 ft <u>5.80 ft</u> 21.0 psf 21.0 psf 47.0 psf 0.0 plf 0.0 psf 1.17 ft	ward drift controls	Lu hd pd hb	Surcharge Load Due to Drifting
Building Official M <u>eeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd) Drift width Surcharge load: Balanced Snow load: <u>Mindward Snow Drifts - from</u> Lower roof length Adj structure factor Drift height Drift width Surcharge load: Balanced Snow load: <u>Sliding Snow - onto lower rooc</u> Sliding snow - Distributed of hd + hb < = h therefore sl	linimum = <u>djacent high</u> lu = Y = hb = hc = Therefore, = w = pd = y*hd = low roof aga lu = bd = y*hd = = pd = y*hd = = hd = = pd = y*hd = = hd = = pd = y*hd = = bd = y*hd = bd = y*hd = y*hd = bd = y*hd = y*hd = bd = y*hd = y*hd = y*hd = bd = y*hd = y*	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft 5.74 ft 25.7 psf 21.0 psf 46.7 psf Winc ainst high roof 32.0 ft 1.00 1.45 ft 5.80 ft 21.0 psf 21.0 psf 47.0 psf 0.0 plf 0.0 psf 1.17 ft 0.0 psf	ward drift controls	Lu hd pd hb	Surcharge Load Due to Drifting Balanced Snow Load
Building Official M <u>eeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd) Drift width Surcharge load: Balanced Snow load: <u>Mindward Snow Drifts - from</u> Lower roof length Adj structure factor Drift height Drift width Surcharge load: Balanced Snow load: <u>Sliding Snow - onto lower rooc</u> Sliding snow - Distributed of hd + hb < = h therefore sl Balanced	linimum = djacent high lu = Y = hb = hc = Therefore, = w = $pd = \gamma^*hd =$ $yd = \gamma^*hd =$ u = hd = w = $pd = \gamma^*hd =$ d = $pd = \gamma^*hd =$ d = $pd = \gamma^*hd =$ d = $pd = \gamma^*hd =$ d = d =	er roof 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft 5.74 ft 25.7 psf 21.0 psf 46.7 psf Wind ainst high roof 32.0 ft 1.00 1.45 ft 5.80 ft 21.0 psf 47.0 psf 0.0 plf 0.0 psf 1.17 ft 0.0 psf 21.0 psf	Iward drift controls	Lu hd pd hb hb	Surcharge Load Due to Drifting Balanced Snow Load
Building Official M <u>eeward Snow Drifts - from ac</u> Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.5 Adj structure factor Drift height (hd) Drift width Surcharge load: Balanced Snow load: <u>Mindward Snow Drifts - from</u> Lower roof length Adj structure factor Drift height Drift width Surcharge load: Balanced Snow load: <u>Sliding Snow - onto lower rooc</u> Sliding snow - Distributed of hd + hb < = h therefore sl Balanced	linimum = <u>djacent high</u> lu = Y = hb = hc = Therefore, = w = pd = y*hd = low roof aga lu = bd = y*hd = = pd = y*hd = = hd = = pd = y*hd = = hd = = pd = y*hd = = bd = y*hd = bd = y*hd = y*hd = bd = y*hd = y*hd = bd = y*hd = y*hd = y*hd = bd = y*hd = y*	<u>er roof</u> 10.0 ft 17.9 pcf 1.17 ft 8.83 ft design for drift 1.00 1.44 ft 5.74 ft 25.7 psf 21.0 psf 46.7 psf Winc ainst high roof 32.0 ft 1.00 1.45 ft 5.80 ft 21.0 psf 21.0 psf 47.0 psf 0.0 plf 0.0 psf 1.17 ft 0.0 psf	Iward drift controls	Lu hd pd hb	Surcharge Load Due to Drifting Balanced Snow Load

STRUCTURAL CONSULTING ENGINEERS

W169 N10815 Redwood Lane Germantown, WI 53022

blodgetteng@wi.rr.com Tel/Fax: 262.293.9923


JOB

SHEET NO.__

CALCULATED BY_

DATE

OF

SYSTEM OVERVIEW

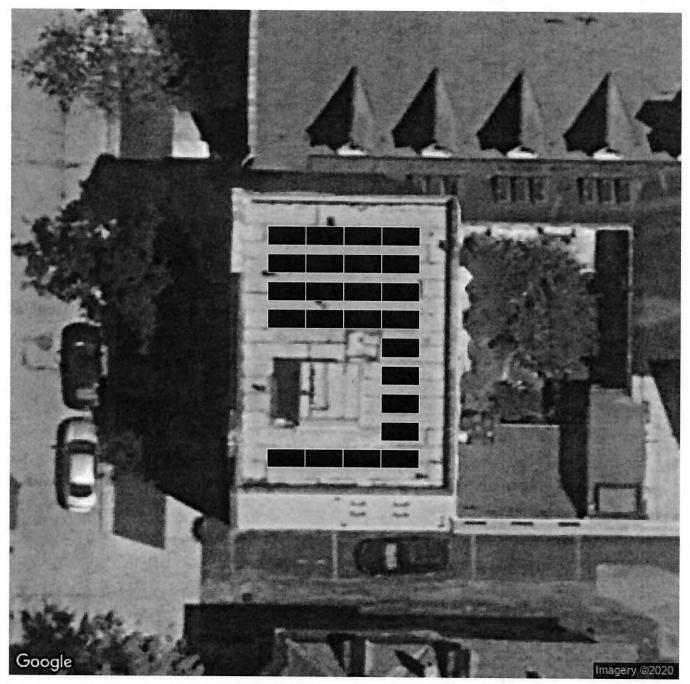
PROJECT SUMMARY

Name:	1342 N Astor St
Address:	1342 N Astor St
	Milwaukee, WI 53202
Prepared By:	Justin Van Camp
	Arch Electric
	justin@archelec.com
	9205454430

System Size:	8.880 kW	Module Mfr:	Philadelphia Solar
Product:	EcoFoot2+	Module Model:	PS-M72-370
Annual Production:	10.435 kWh	Modules Quantity:	24
Module Tilt:	10°		

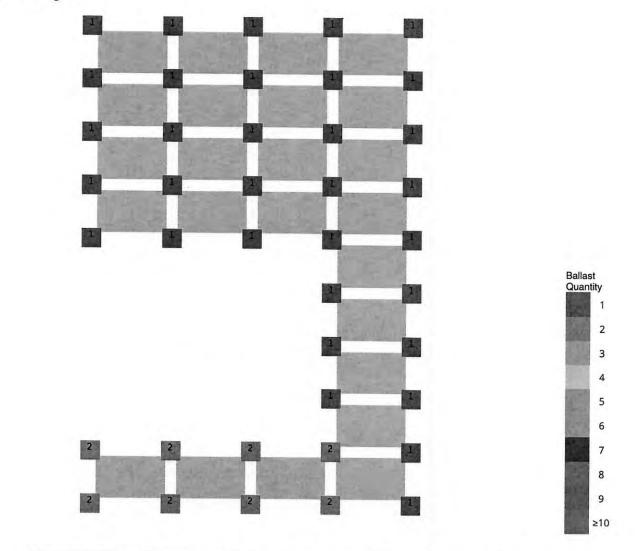
DESIGN CRITERIA

Wind Exposure:	В	Seismic (S _c):	0.09	
Wind Speed:	100 mph	Soil Site Class:	D	
Ground Snow Load:	30 psf	ASCE 7 Version:	2010	
Ballast Block Weight	:: 32.00 lbs	Rick Category:	11	


ROOF DETAILS

Roof Name:	Roof 1	Roof Height:	35.00'
Product:	EcoFoot2+	Roof Azimuth:	180°, 270°
Tilt Angle:	10°	Roof Material:	EPDM Membrane
Inter-row Spacing:	18.90"	Parapet Height:	36"
Array Azimuth:	180°	Roof Slope:	1°
Array Setback:	36"	Skewed Array:	No

BILL OF MATERIAL


Part	Description	Quantity	
ECO-002_207	EcoFoot2+ Base	41	
ES10466	EcoFoot Universal Clamp Kit	33	
ECO-002_311C	EcoFoot2+ 82" Wind Deflector	24	
	Ballast Block Estimate	49	
ES10493	EcoFoot Universal Clamp Kit w/ Power Accessory Mount	0	
ES10378	38" Bonding Jumpers	8	

Roof 1 Array 1

NOT FOR CONSTRUCTION: Ballast Layout and Array Specifications are preliminary estimates. Please contact Sales@EcolibriumSolar.com for final ballast design prior to installation.

ARRAY SPECIFICATIONS

Height:	35'	Array Sq. Ft:	745 sg.ft
Skewed:	No	Array Weight:	3,067.683 lb
Created:	January 02, 2020 09:42 PM	Array lbs/sq. ft:	4.12 lb/sq.ft
Mounting:	EcoFoot 2+	Ballast Block Weig	ht: 32.000 lb
Modules:	Philadelphia Solar PS-M72-370	Ballast Blocks Qty:	49

ARRAY Page 3 of 4

BALLAST = 49 x 32 = 1568

ARRAY - BALLAST = 3067.6 - 1568 = 1494.6

= 2.0 PSF

740-249-1877

1499

sales@ecolibriumsolar.com

ARRAY BILL OF MATERIALS

Base	
	41
niversal Clamp Kit	33
82" Wind Deflector	24
niversal Clamp Kit w/ Power Accessory Mount	0
ng Jumpers	8
ck Estimate	49
	niversal Clamp Kit w/ Power Accessory Mount