

NOTES

1. THE UNDERGROUND UTILITY INFORMATION AS SHOWN HEREON IS BASED, IN PART, ON INFORMATION FURNISHED BY THE UTILITY COMPANIES, DIGGERS HOTLINE AND THE LOCAL MUNICIPALITY. WHILE THIS INFORMATION IS BELIEVED TO BE RELIABLE, ITS ACCURACY AND COMPLETENESS CANNOT BE GUARANTEED NOR CERTIFIED TO. 2. SUBJECT PROPERTY ARE LOCATED WITHIN AN AREA HAVING A ZONE DESIGNATION X: AREAS DETERMINED TO BE OUTSIDE THE 0.2% ANNUAL CHANCE

FLOOD PLAIN, AE: SPECIAL FLOOD HAZARD AREAS (SFHAs) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD WITH BASE FLOOD ELEVATIONS DETERMINED PER INFORMATION FROM THE FEDERAL EMERGENCY MANAGEMENT AGENCY (FEMA), ON FLOOD INSURANCE RATE MAP NO. 55079C0087E, WITH A DATE OF IDENTIFICATION OF SEPTEMBER 26, 2008, IN COMMUNITY NO. 550278, THE CITY OF MILWAUKEE, WHICH IS THE COMMUNITY IN WHICH THE SUBJECT PROPERTY IS SITUATED.

4. AREAS MARKED "ZONE AE*" DETERMINED BY GRAPHICAL DEPICTION FROM FIRM MAP ONLY. FURTHER INQUIRY REQUIRED FOR DETERMINED ELEVATIONS MARKING THE LIMITS OF FLOOD ZONE SHOWN, IF FLOOD ZONE SHOWN CAN BE DETERMINED BY ELEVATION.

5. PROJECT BENCHMARK – CONCRETE MONUMENT WITH ALUMINUM CAP FOUND IN TOP OF BRIDGE PARAPET WALL 3.6' ABOVE CONCRETE WALK ON NORTH SIDE OF W. WISCONSIN AVE, 139.97 FEET NORTHWESTERLY OF THE EAST CORNER OF SECTION 26-7-21, EL = 88.73. 6. SITE BENCHMARK - NORTH RIM OF STORM MANHOLE RIM, AS SHOWN HEREON, EL = 33.16.

7. ELEVATIONS BASED ON INFORMATION FROM THE SEWRPC OF AND ARE AT CITY OF MILWAUKEE DATUM.

	LEGEND	\boxtimes	ELECTRIC TRANSFORMER	Ş	HYDRANT
			ELECTRIC METER	\bowtie	WATER VALVE
— SAN ——	SANITARY SEWER	EP	ELECTRIC PEDESTAL	GV	
— ST ——	STORM SEWER	EB	ELECTRIC BOX AT GRADE	\bowtie	GAS VALVE
—— W ———	WATER MAIN	Птв	TELEPHONE BOX AT GRADE	(MH)	MANHOLE
G	BURIED GAS LINE	TP 🗌	TELEPHONE PEDESTAL	ă	CTODM MANUALE
TEL	BURIED TELEPHONE LINE	TV	TV PEDESTAL	S	STORM MANHOLE
—— E ——	BURIED ELECTRIC LINE	СМ	GAS METER	СВ	CATCH BASIN
— FO ——	BURIED FIBER OPTIC LINE	A	AIR CONDITIONER	Ē	
— // —	OVERHEAD UTILITY LINES	ပ	UTILITY POLE		CORD INCL
CATV	BURIED CABLE TELEVISION LINES	-u-	WOOD SIGN	-@-	METAL LIGHT POLE
COMB	COMBINATION SEWER	-0	METAL SIGN		CONCRETE LIGHT POLE
-00	WOOD FENCE	4	FLAG POLE	Ť	
- oo	METAL FENCE	0	BOLLARD	-₩-	WOOD LIGHT POLE
\longrightarrow	EDGE OF TREES AND BRUSH	¢	BOLLARD LIGHT	ШМВ	MAIL BOX
33.88 DS 🔶	DOOR SILL ELEVATION		YARD LIGHT	Of	FIBER OPTIC MARKER
参び	FIRE DEPARTMENT CONNECTION			€UY	GUY WIRE

EXISTING CONDITIONS SURVEY

FOR HISTORIC MC GETTELMAN BUILDING 4315 W. STATE ST. MILWAUKEE, WI

Checked By: MJB Drawing No. EC - 093	Dr awn By:	NJF	Date: NOV. 20, 2017
	Checked By:	MJB	Drawing No. EC - 093
$\texttt{CSE Job No.:} 17 \cdot 093 \qquad \texttt{Sheet} 1 \qquad \texttt{of} \qquad 1$	CSE Job No.:	17-093	Sheet 1 of 1

					PLANT:	MILWAUKEE
					DATE:	01/09/18
						architecture interior design
Ī						INITIAL
ſ					DR.	
┢					CH.	
					APPR.	
	DESCRIPTION	REV.	CHANGED BY	DATE	SCALE	

	~C		MILLERCOORS PROJECT NUMBER
E,	WISCO	NSIN	PROJECT DESIGN LEAD
EX	ISTING SU		
HIS	STORIC PH	RESERVATION SUE	BMITTAL
			17047-00
i <u>16 W232</u> verw.jakne	17 STONE RIDGE DRIVE, SJ riteccom office 262 S1	ute 300 waukesha, wi 53188 3 9600 Tak 762 513 9815	JAK PROJECT MANAGER
i 16 W232 varw jakre	17 STOME RDGE DRIVE, SU THECODY office 262 51	19 200 WAIRESHA WI 53188 3 9600 fee 262 513 9815 SUBJECT BLDG. NG	JAK PROJECT MANAGER DK D. RELEASE NO.SIZE

D TRANSMISSION FACILITIES, EXCAVATOR SHALL BE SOLELY RESPONSIBLE TO PROVIDE ADVANCE NOTICE TO THE DESIGNATED ONE CALL SYSTEM" NOT LESS THAN THREE WORKING DAYS PRIOR TO COMMENCEMENT OF ANY EXCAVATION REQUIRED TO PERFORM WORK CONTAINED ON THESE DRAWINGS, AND FURTHER, EXCAVATOR SHALL COMPLY WITH ALL OTHER REQUIREMENTS OF THIS STATUTE RELATIVE TO EXCAVATOR'S WORK.

EROSION CONTROL NOTES	AN
STIMATED CONSTRUCTION TIMEFRAMES:	
NSTALL EROSION CONTROL = MAY, 2018	

GRADING AND UTILITY INSTALLATION = MAY, 2018 FINAL SITE GRADING AND RESTORATION = JULY, 2018 ALL CHANGES TO THE ABOVE SCHEDULE SHALL BE REVIEWED AND

- CONTRACTOR SHALL INSPECT ALL EROSION CONTROL PRACTICES WEEKLY AND AFTER ANY RAINFALL EVENT OF 0.5 INCHES OR GREATER. THE CONTRACTOR SHALL PERFORM ALL INSPECTIONS AND DOCUMENTATION PER THE WISCONSIN DEPARTMENT OF NATURAL
- PRIOR TO BEGINNING CONSTRUCTION, THE CONTRACTOR WILL HAVE IN PLACE, ALL APPLICABLE PLAN APPROVALS AND PERMITS.
- INSTALL INLET PROTECTION WHERE INDICATED ON PLANS.
- STRIP TOPSOIL FROM THE SITE (WHERE PROPOSED IMPROVEMENTS OR GRADING IS SHOWN ONLY). TOPSOIL STOCKPILE(S) REMAINING FOR MORE THAN SEVEN DAYS SHALL BE STABILIZED WITH VEGETATIVE COVER, MULCH, TARPS OR OTHER APPROVED PRACTICE. EROSION FROM TOPSOIL PILES LEFT FOR LESS THAN SEVEN DAYS SHALL BE CONTROLLED WITH SILT FENCE OR OTHER APPROVED METHOD. ANY TOPSOIL STOCKPILE WITHIN 25' OF A ROADWAY OR DRAINAGE DITCH SHALL BE COVERED WITH TARPS OR OTHER APPROVED METHOD. ALL DISTURBED GROUND LEFT INACTIVE FOR SEVEN OR MORE DAYS IS TO BE STABILIZED BY SEED, SOD,
- REDISTRIBUTE TOPSOIL FROM STOCKPILE(S) TO A DEPTH OF 6 INCHES. SURPLUS TOPSOIL SHALL BE REMOVED FROM THE SITE BY THE CONTRACTOR, COORDINATE W/ OWNER. FINAL GRADE, SEED AND MULCH SITE. PLACE EROSION CONTROL MATTING WHERE INDICATED ON PLANS. (SEEDING AND MULCHING TO CONFORM WITH APPROVED SEED MIXTURES AND APPLICATION RATES, SEE LANDSCAPE PLAN FOR FINAL SEED AND SOD SPECS. EROSION CONTROL MATTING TO BE INSTALLED PER
- INSTALL AGGREGATE BASE COURSE IN AREAS TO BE CONCRETE PAVED
- UPON SITE STABILIZATION, REMOVE TEMPORARY EROSION CONTROL PRACTICES. CLEAN STRUCTURES OF ANY SEDIMENT AND/OR
- . CONSTRUCTION AND WASTE MATERIALS SHALL BE PROPERLY DISPOSED OF ON A ROUTINE BASIS. NO CONSTRUCTION OR WASTE MATERIALS SHALL BE TRACKED, BLOWN OR OTHERWISE LOCATED OR STORED ON
- 11. DUST CONTROL SHALL BE MAINTAINED ONSITE WITH USE OF A WATER

PROPOSED ELECTRICAL LINE EXISTING SANITARY SEWER PROPOSED SANITARY SEWER EXISTING STORM SEWER PROPOSED STORM SEWER EXISTING POWER POLES EXISTING WATER VALVE PROPOSED WATER VALVE EXISTING STORM STRUCTURE PROPOSED STORM STRUCTURE DENOTES EMERGENCY OVERFLOW ROUTE / DRAINAGE

PROPOSED & EXISTING SPOT GRADE

				PLANT	: MILWAUKEE	
				DATE:	01/09/18	
					architecture interior design JAKnetter Architects	2 5
					INITIAL	
	+			DR.		
				CH.		
	<u> </u>			APPR.		
DESCRIPTION	REV.	CHANGED BY	DATE	SCALE		

Engineering Consultant

255 North 21st Street Milwaukee, WI 53233

1	GENERAL NOTES AND SPECIFICATIONS		CAST IN PLACE CONCRETE
	PROVIDED BY CAPITOL SURVEY ENTERPRISES. THE ENGINEER MAKES NO WARRANTY OR REPRESENTATION WITH REFERENCE TO THE ACCURACY AND COMPLETENESS OF THE EXISTING CONDITIONS INDICATED OR NOT INDICATED ON THE ENGINEERING PLANS PROVIDED. THE CONTRACTOR SHALL VERIFY THE LOCATION OF ALL EXISTING SITE CONDITIONS INCLUDING UNDERGROUND UTILITIES, UNDERGROUND UTILITY ELEVATIONS, BUILDING SETBACKS AND EXISTING BUILDING LOCATIONS. THE	2.	SUPPLIER'S INSTRUCTIONS. ALL CONCRETE WORK WHICH DOES NOT CONFORM TO THE REQUIREMENTS OF THE CONTRACT DOCUMENTS AND ACI 301, INCLUDING FUNCTION, DURABILITY APPEARANCE, STRENGTH, CRACKING, TOLERANCES AND FINISHING, SHALL BE CORRECTED AS DIRECTED BY ARCHITECT AT CONTRACTOR'S EXPENSE.
2.	CONTRACTOR SHALL INFORM THE OWNER AND ENGINEER OF ANY DISCREPANCIES PRIOR TO COMMENCING WITH WORK. QUESTIONS REGARDING THE EXISTING SURVEY SHALL BE DIRECTED TO THE PARTIES LISTED ABOVE. BEFORE PROCEEDING WITH ANY UTILITY CONSTRUCTION, CONTRACTOR SHALL		ADDITIONAL TESTING, ENGINEERING, REINFORCEMENT AND REMOVAL AND REPLACEMENT OF DEFECTIVE CONCRETE SHALL BE PAID FOR BY CONCRETE CONTRACTOR. CONTRACTOR SHALL ALSO BE RESPONSIBLE FOR THE COST O CORRECTIONS TO ANY OTHER WORK AFFECTED BY OR RESULTING FROM CORRECTIONS TO THE CONCRETE WORK.
	EXCAVATE EACH EXISTING LATERAL TO BE CONNECTED TO (VERIFYING ELEVATION, LOCATION AND SIZE). SHOULD THE EXISTING UTILITY NOT BE AS INDICATED ON THE PLAN, THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY FOR EVALUATION.	3.	CONCRETE SHALL CONFORM TO SECTIONS 501 AND 601 OF THE STANDARD SPECIFICATIONS FOR HIGHWAY CONSTRUCTION.
3.	ALL UTILITY CONSTRUCTION SHALL ADHERE TO THE STANDARD SPECIFICATIONS FOR SEWER AND WATER CONSTRUCTION IN WISCONSIN (2003), AS WELL AS, THE CITY OF	4.	ALL CONCRETE, UNLESS OTHERWISE SPECIFICALLY PERMITTED BY ARCHITEC SHALL BE TRANSIT-MIXED IN ACCORDANCE WITH ASTM C 94.
	WEST ALLIS CONSTRUCTION STANDARDS AND THE DEPT. OF SAFETY AND PROFESSIONAL SERVICED SEC. 382-387.	5.	IN GENERAL, COMPLY WITH ASTM C 33 FOR GRADING AND QUALITY OF FINE AN COARSE AGGREGATE FOR USE IN CONCRETE.
4. 5.	ALL UTILITY PERMITS MUST BE RECEIVED FROM THE CITY OF WEST ALLIS PRIOR TO THE START OF CONSTRUCTION. NOTIFY THE PUBLIC WORKS INSPECTION DEPT. AT LEAST 48 HOURS BEFORE STARTING CONSTRUCTION	6.	PORTLAND CEMENT SHALL CONFORM WITH ASTM C 150 AND SHALL ONLY CONTAIN THE FOLLOWING INGREDIENTS: PORTLAND CEMENT CLINKER; WATER OR CALCIUM SULFATE, OR BOTH; LIMESTONE; PROCESSING ADDITIONS; AND AIR-ENTRAINING ADDITION FOR AIR-ENTRAINING PORTLAND CEMENT.
6.	BACKFILL REQUIREMENTS AND ROADWAY/SIDEWALK RESTORATION SHALL ADHERE TO LOCAL STANDARDS (GRANULAR BACKFILL UNDER OR WITHIN 5' OF CURBS, SIDEWALK,	7.	ADMIXTURES SHALL NOT CONTAIN MORE CHLORIDE IONS THAN ARE PRESENT MUNICIPAL DRINKING WATER.
	REQUIRED IN PUBLIC ROADWAYS.)	8.	WATER REDUCING ADMIXTURES SHALL CONFORM TO ASTM C 494.
7.	ALL BUILDING UTILITIES SHALL BE VERIFIED WITH THE ARCHITECTURAL PLANS PRIOR TO CONSTRUCTION.	10.	CALCIUM CHLORIDE, THIOCYANATES OR ADMIXTURES CONTAINING MORE THA
8.	PROPOSED STORM SEWER SHALL BE PVC, ASTM D-3034, SDR 35 WITH RUBBER ELASTOMERIC JOINTS CONFORMING TO ASTM D-3212 (UNLESS OTHERWISE NOTED).	11	IN CONCRETE MIXES.
9.	UTILITY TRENCHES SHALL BE MECHANICALLY COMPACTED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS FOR SEWER AND WATER CONSTRUCTION IN WISCONSIN.		WIRE FABRIC. SYNTHETIC FIBERS SHALL NOT REPLACE REINFORCING REBAR/DOWELS AS DEPICTED ON THE CONSTRUCTION DETAILS.
10	CONSTRUCTION. ALSO, CONTRACTOR IS RESPONSIBLE FOR REMOVING EROSION CONTROL METHODS ONCE THE SITE IS STABILIZED.	12.	FOR CONCRETE PAVEMENTS: MATRIX HPS 950 MACRO/MICRO SYNTHETIC BLE FIBER OR FORTA FERRO MACRO FIBER - FRC INDUSTRIES. APPLICATION DOSA SHALL BE 5 POUNDS PER CUBIC YARD.
11	THE PROPOSED SITE LOCATION AND SURROUNDING STREETS MUST BE KEPT DEBRIS FREE. SWEEP STREETS AS NEEDED TO MAINTAIN CLEAN STREETS.	13.	CONCRETE MUST MEET ALL REQUIREMENTS OF THE ASTM C 94, ACI 211, ACI 3 CHAPTER 4 DURABILITY REQUIREMENTS, AND THOSE HEREIN SPECIFIED FOR MATERIALS PROPORTIONING MIXING AND OTHER DETAILS OF MANUFACTURE
12	ALL EXCAVATED OR STRIPPED MATERIALS NOT BEING REPLACED IN UTILITY TRENCHES OR BEING USED FOR FILL SHALL BE REMOVED FROM THE SITE, UNLESS OTHERWISE DIRECTED BY THE OWNER.	14.	QUALITY AND DELIVER. AIR ENTRAINED CONCRETE: USE FOR ALL EXTERIOR SLABS, WALLS, WALKS,
13	ALL DISTURBED GRASS AREAS SHALL BE STABILIZED (PER DNR TECHNICAL STANDARDS) WITHIN 7 DAYS OF COMPLETION. DISTURBED GRASS AREAS SHALL BE TOPSOILED (6"), RESEEDED AND STABILIZED. AREAS WITH A SLOPE OF 3H:1V OR	15.	PLATFORMS, RAMPS, STEPS, ALL PORTIONS OF PARKING MINIMUM COMPRESSIVE STRENGTH AT 28 DAYS: 4000 PSI.
	STEEPER SHALL BE COVERED WITH A CLASS 1 - TYPE A EROSION FABRIC. (SEE SPECIFICATIONS)	16.	MAXIMUM AGGREGATE SIZE SHALL NOT EXCEED ONE THIRD OF THE SLAB ON GRADE THICKNESS.
14	SEE ARCHITECTURAL PLANS FOR EXACT BUILDING & FOUNDATION DETAILS AND ORIENTATION.	17.	FLY ASH MAY BE USED AS A POUND FOR POUND REPLACEMENT OF CEMENT U TO 20% OF THE TOTAL CEMENTITIOUS CONTENT, 25% FOR FOOTINGS, EXCEPT FOR FINISHED FLATWORK DURING WINTER CONSTRUCTION, SUBJECT TO
10	EXISTING IN ELEVATION AND ALIGNMENT.	18.	ARCHITECT'S APPROVAL. CONCRETE REQUIRING AIR ENTRAINMENT SHALL CONTAIN SIX (6) PERCENT PI
17	SPECIFICATIONS OF THE WISCONSIN D.O.T. ALL CONCRETE MUST CONFORM TO THE STANDARD SPECIFICATIONS FOR READY	19	OR MINUS ONE AND A HALF (1.5) PERCENT AIR BY VOLUME, FOR 3/4" DIA. AGGREGATE. CONFORM TO ACI 318, CHAPTER 4.
18	MIXED CONCRETE. MINIMUM 28 DAY COMPRESSIVE STRENGTH TEST MUST EQUAL 4000 PSI. CONTRACTOR IS RESPONSIBLE FOR PROTECTING ALL PROPERTY CORNERS.		WATER-REDUCING -RETARDING ADMIXTURE AND/OR THE SPECIFIED HIGH-RAN WATER-REDUCING ADMIXTURE (SUPERPLASTICIZER). SPECIFIED CEMENT CONTENTS SHALL BE INCREASED 10 PERCENT (10%) WHEN NO WATER-REDUC
19	CONTRACTOR IS RESPONSIBLE FOR REPAIRING ANY DAMAGE TO EXISTING UTILITIES OR SITE IMPROVEMENTS. CONTRACTOR SHALL DOCUMENT ALL EXISTING DAMAGE PRIOR TO START OF CONSTRUCTION AND NOTIFY CONSTRUCTION MANAGER OF ANY EINDINGS	20.	MEASURING MATERIALS: CEMENT, AGGREGATES, WATER AND ADMIXTURES SH BE MEASURED AND COMBINED STRICTLY IN ACCORDANCE WITH ASTM SPECIFICATION C 94.
20	. PROJECT SAFETY ON-SITE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.	21.	MAKE ONE SLUMP TEST OF THE FIRST TRUCK OF EACH MIX, EACH DAY, ONE THE FOR EACH COMPRESSION TEST AND OTHER TESTS AS OFTEN AS REQUIRED
21	CONTRACTOR IS RESPONSIBLE FOR VERIFYING EXISTING SOIL CONDITIONS, CONSTRUCTION MANAGER MAY HAVE SOILS REPORT FOR MORE INFO.	22.	THEREAFTER, WHENEVER CONSISTENCY CHANGES. AIR CONTENT TESTS SHALL BE MADE FROM THE FIRST TRUCK OF EACH MIX, E DAY AND WHEN-EVER TEST CYLINDERS ARE MADE, IN ACCORDANCE WITH AST
22	. CONTRACTOR IS RESPONSIBLE FOR PROVIDING THE OWNER WITH A SET OF MARKED UP PLANS (AS-BUILTS) SHOWING ANY CHANGES DURING CONSTRUCTION.	23	ACHIEVED.
	DENSE GRADED BASE		DEGREES F (4 DEGREES C) AND BELOW, AND WHEN 80 DEGREES F (27 DEGREI C) AND ABOVE; AND EACH TIME A SET OF COMPRESSION TEST SPECIMENS IS MADE.
1.	MATERIALS SHALL CONFORM TO SECTION 301.2 OF THE WISDOT STANDARD SPECIFICATIONS FOR HIGHWAY AND STRUCTURE CONSTRUCTION. MATERIAL GRADATIONS SHALL CONFORM TO SECTION 305.2.2 OF THE WISDOT STANDARD SPECIFICATIONS FOR HIGHWAY AND STRUCTURE CONSTRUCTION UNLESS SPECIFIED ELSEWHERE IN THE CONTRACT DOCUMENTS.	24.	IF MEASURED SLUMP, AIR CONTENT OR CONCRETE TEMPERATURE FALLS OUTSIDE LIMITS SPECIFIED, A CHECK TEST SHALL BE MADE IMMEDIATELY ON ANOTHER PORTION OF SAME SAMPLE. IN EVENT OF A SECOND FAILURE, CONCRETE SHALL BE CONSIDERED TO HAVE FAILED TO MEET REQUIREMENTS SPECIFICATIONS AND SHALL NOT BE USED IN STRUCTURE. NOTIFY ARCHITECT IMMEDIATELY.
2. 3.	BASE COURSE MATERIAL SHALL BE CRUSHED STONE OR CRUSHED GRAVEL ONLY. PREPARE THE FOUNDATION, OR RESURFACE THE PREVIOUSLY PLACED BASE LAYER,	25.	STRENGTH TESTS SHALL BE MADE FOR EACH OF THE FOLLOWING CONDITION EACH DAY'S POUR, EACH CLASS OF CONCRETE, EACH CHANGE OF SUPPLIES (
	AS SPECIFIED IN WISDOT SECTION 211 BEFORE PLACING BASE. DO NOT PLACE BASE FOUNDATIONS THAT ARE SOFT, SPONGY, OR COVERED BY ICE OR SNOW. WATER AND REWORK OR RE-COMPACT DRY FOUNDATIONS AS NECESSARY TO ENSURE PROPER COMPACTION, OR AS THE REPRESENTATIVE DESIGNATES.	26.	EACH 5000 SQUARE FEET OF SURFACE AREA FOR SLABS OR WALLS. TO CONFORM TO REQUIREMENTS OF THIS SPECIFICATION, THE STRENGTH LE SHALL BE CONSIDERED SATISFACTORY SO LONG AS THE AVERAGE OF ALL SE
4.	IN PROPOSED PAVEMENT AREAS, ALL ORGANIC SOLID SHALL BE REMOVED.		OF THREE (3) CONSECUTIVE STRENGTH TEST RESULTS EQUALS OR EXCEEDS SPECIFIED F'C AND NO INDIVIDUAL STRENGTH TEST RESULT FALLS BELOW TH SPECIFIED STRENGTH F'C BY MORE THAN 500 PSL ARCHITECT SHALL BE NOT
5.	IN AREAS OF EXISTING PAVEMENT TO BE MODIFIED OR ADJUSTED IN GRADE, THE EXISTING PAVEMENT SECTION SHALL BE REMOVED BY AN ACCEPTABLE METHOD. THE NEW PAVEMENT SECTION SHALL MATCH THE CONSTRUCTION DETAILS.	27.	IMMEDIATELY OF NONCONFORMANCE. BEFORE PLACING CONCRETE, VERIFY THAT INSTALLATION OF FORMWORK,
6.	PROOF-ROLL ALL SUBGRADE AREAS THAT ARE TO RECEIVE AGGREGATE BASE OR PAVEMENT.		REINFORCEMENT, AND EMBEDDED ITEMS IS COMPLETE AND THAT REQUIRED INSPECTIONS HAVE BEEN PERFORMED.
7.	BUILD AND MAINTAIN STOCKPILES USING METHODS THAT MINIMIZE SEGREGATION AND PREVENT CONTAMINATION. IF THE CONTRACT SPECIFIES LOCATION, PLACE STOCKPILES WHERE SPECIFIED. CLEAR AND PREPARE STOCKPILE AREAS TO FACILITATE THE RECOVERY OF THE MAXIMUM AMOUNT OF STOCKPILED MATERIAL.	28.	PROTECT FRESHLY PLACED CONCRETE FROM PREMATURE DRYING AND EXCESSIVE COLD OR HOT TEMPERATURES IN CONFORMANCE WITH ACI 301 AN ACI 308.
8.	PLACE AGGREGATE IN A MANNER THAT MINIMIZES HAULING ON THE SUBGRADE. DO NOT USE VEHICLES OR OPERATIONS THAT DAMAGE THE SUBGRADE OR IN-PLACE BASE. DEPOSIT MATERIAL IN A MANNER THAT MINIMIZES SEGREGATION.	29.	AS SHOWN ON THE DRAWINGS, OR TO MATCH ADJACENT EXISTING PAVEMENT TIE BARS SHOULD BE PLACED AT ALL CONSTRUCTION JOINTS PARALLEL TO TRAFFIC AND CONSIST OF NO. 4 REINFORCING BARS, 24 INCHES IN LENGTH AN 48 INCHES ON CENTER, UNLESS OTHERWISE NOTED ON THE STANDARD DETA
9.	COMPACT THE BASE UNTIL THERE IS NO APPRECIABLE DISPLACEMENT, EITHER LATERALLY OR LONGITUDINALLY, UNDER THE COMPACTION EQUIPMENT.		
10.	COMPACT EACH BASE LAYER, INCLUDING SHOULDER FORESLOPES, WITH EQUIPMENT SPECIFIED IN WISDOT SECTION 301.3.1. USE STANDARD COMPACTION CONFORMING TO WISDOT SECTION 301.3.4.2, UNLESS THE SPECIAL PROVISIONS SPECIFY OTHER METHODS. FINAL SHAPING OF SHOULDER FORESLOPES DOES NOT REQUIRE		
11.	AFTER THE PROJECT IS COMPLETED, THOROUGHLY CLEAN UP ALL DEBRIS WHICH MAY HAVE ACCUMULATED DURING THE PLACEMENT OF DENSE GRADED BASE. REPLACE OR REPAIR AS REQUIRED, ALL SURFACES AND/OR LANDSCAPE FEATURES DAMAGED OR DISTURBED UNDER THIS ITEM OF WORK.		

CAST IN PLACE CONCRETE

GENERAL NOTES:

ETIC FIBERS SHALL BE USED IN CONCRETE MIX DESIGN IN LIEU OF WELDED ABRIC. SYNTHETIC FIBERS SHALL NOT REPLACE REINFORCING /DOWELS AS DEPICTED ON THE CONSTRUCTION DETAILS.

RETE REQUIRING AIR ENTRAINMENT SHALL CONTAIN SIX (6) PERCENT PLUS IUS ONE AND A HALF (1.5) PERCENT AIR BY VOLUME, FOR 3/4" DIA. EGATE. CONFORM TO ACI 318, CHAPTER 4.

DNCRETE MUST CONTAIN THE SPECIFIED WATER-REDUCING ADMIXTURE OR R-REDUCING -RETARDING ADMIXTURE AND/OR THE SPECIFIED HIGH-RANGE R-REDUCING ADMIXTURE (SUPERPLASTICIZER). SPECIFIED CEMENT INTS SHALL BE INCREASED 10 PERCENT (10%) WHEN NO WATER-REDUCING TURES ARE USED.

IRING MATERIALS: CEMENT, AGGREGATES, WATER AND ADMIXTURES SHALL ASURED AND COMBINED STRICTLY IN ACCORDANCE WITH ASTM FICATION C 94.

ONE SLUMP TEST OF THE FIRST TRUCK OF EACH MIX, EACH DAY, ONE TEST ACH COMPRESSION TEST AND OTHER TESTS AS OFTEN AS REQUIRED AFTER, WHENEVER CONSISTENCY CHANGES. INTENT TESTS SHALL BE MADE FROM THE FIRST TRUCK OF EACH MIX, EACH

ND WHEN-EVER TEST CYLINDERS ARE MADE, IN ACCORDANCE WITH ASTM C ASTM C231. TEST MORE OFTEN WHEN REQUIRED AIR CONTENTS ARE NOT VED. RETE TEMPERATURE: TEST HOURLY WHEN AIR TEMPERATURE IS 40

SURED SLUMP, AIR CONTENT OR CONCRETE TEMPERATURE FALLS DE LIMITS SPECIFIED, A CHECK TEST SHALL BE MADE IMMEDIATELY ON IER PORTION OF SAME SAMPLE. IN EVENT OF A SECOND FAILURE, RETE SHALL BE CONSIDERED TO HAVE FAILED TO MEET REQUIREMENTS OF FICATIONS AND SHALL NOT BE USED IN STRUCTURE. NOTIFY ARCHITECT IATELY.

NFORM TO REQUIREMENTS OF THIS SPECIFICATION, THE STRENGTH LEVEL BE CONSIDERED SATISFACTORY SO LONG AS THE AVERAGE OF ALL SETS REE (3) CONSECUTIVE STRENGTH TEST RESULTS EQUALS OR EXCEEDS THE FIED F'C AND NO INDIVIDUAL STRENGTH TEST RESULT FALLS BELOW THE FIED STRENGTH F'C BY MORE THAN 500 PSI. ARCHITECT SHALL BE NOTIFIED IATELY OF NONCONFORMANCE.

DE CONCRETE PAVEMENT HAVING THE THICKNESS AND REINFORCEMENT OWN ON THE DRAWINGS, OR TO MATCH ADJACENT EXISTING PAVEMENT. RS SHOULD BE PLACED AT ALL CONSTRUCTION JOINTS PARALLEL TO IC AND CONSIST OF NO. 4 REINFORCING BARS, 24 INCHES IN LENGTH AND HES ON CENTER, UNLESS OTHERWISE NOTED ON THE STANDARD DETAILS.

08/09/11

02 INLET PROTECTION NTS

<u>NOTES:</u> • CONTROL JOINT SPACING SHALL								
BE A MAXIMUM OF 5' AND CONSTRUCTED IN CONFORMANCE WITH AMERICAN CONCRETE INSTITUTE (ACI)								
RECOMMENDATIONS. • EXPANSION JOINTS SHOULD BE PROVIDED WHERE PAVEMENT								
 ABUTS FIXED OBJECTS. MATRIX BI BLEND MICRO FIBER TO BE ADDED AT A RATE OF 1.5 								
POUNDS PER CUBIC YARD.								
524 01/23/13								
SE, TYP.								
8								
CE, TYP.								
PLANS.								
504								
11/19/10								
~~ , ' ' ' ' <i>'</i>								
B								
JRB								
PLANS.								
508								
11/19/10								
	I I							
				Mille	erCo	ors	MILLERCOORS PROJECT NUMBER	
			PLANT	MILWAUKEE,		ISIN on details & si	ADLER PECIFICATIONS	
			DATE:	01/09/18 HI	STORIC PRI	ESERVATION SU	BMITTAL JAK PROJECT NUMBER	-
				architecture interior design	1217 STONE RIDGE DRIVE, SUITE nettectorn office 262 S13 4	. 300 WAUKESHA, WI 53188 1600 fav. 262 513 18815	17047-00 Jak project manager	
r			DR.	INITIAL	DATE	SUBJECT BLDG. N	DK 10. RELEASE NO.SIZE	-
		ED D	CH.			C5	.00	
		DATE	SUALE					

2

3

5

				6	Mil	lerC
				PLANT:	MILWAUKEE	FOUNDATION P
				DATE:	01/09/18	HISTORICAL
				_	architecture interior design JAKnetter Architects	6 W23217 STONE RDGE DRIVE SUITE 3 Wjøknettercom office 262 ST3 98
					INITIAL	DATE
				DR.		
				CH.		
				APPR.		
DESCRIPTION	REV	BY	DATE	SCALE		1

7

REMARKS

FOUNDATION PLAN NOTES:	FOUNDATION PLAN KEYED NOTES:
 REFER TO GENERAL NOTES FOR ADDITIONAL STRUCTURAL NOTES AND FOUNDATION REQUIREMENTS. 	$\langle 1 \rangle$
 ELEVATION 100'-0" ON STRUCTURAL DRAWINGS CORRESPONDS TO FF ELEVATION SHOWN ON SITE PLAN, TYPICAL. 	
3. <u>SLAB ON GRADE CONTROL JOINTS:</u> PROVIDE SAW CUT CONTROL JOINTS IN CONCRETE SLAB ON GRADE CONSTRUCTION WITHIN 24 HOURS OF INITIAL POUR. CONTROL JOINTS SHALL BI SPACED AT 36 TIMES THE SLAB THICKNESS, UP TO A MAXIMUM SPACING OF 14'-0". THE ASPECT RATIO OF SLAB PANELS SHALL BE A MAXIMUM OF 1.5 TO 1. CONTROL JOINTS SHALL BE PLACED ON COLUMN CENTERLINES, INTERIOR CORNERS, AND FLOOR DISCONTINUITIES (PITS, EQUIPMENT PADS, TRENCHES, DEPRESSED SLABS, ETC.). SLAB ON GRADE CONSTRUCTION SHALL CONFORM TO ACI 302 "GUIDE FOR CONCRETE FLOOR AND SLAB CONSTRUCTION". REFER TO TYPICAL DETAILS FOR SLAB ON GRADE CONSTRUCTION.	
 BASED ON THE SOILS REPORT, CONTRACTOR TO BE AWARE OF AREAS OF POSSIBLE OVEREXCAVATION TO REMOVE POOR SOILS. SOIL BEARING 	

2 PRECAST PLANK AT EXTERIOR CONCRETE FOUNDATION WALL S100

-EXISTING MULTI-WYTHE

T/FINISH FLOOR REFER TO PLAN

#5 DOWEL AT 18" o/c. LAP 24" w/ VERTICAL REINFORCING. PROVIDE STANDARD 90° HOOK INTO FOOTING.

T/SLAB REFER TO PLAN

T/FOOTING REFER TO PLAN

122612 IlerCoors PROJECT LEAD DESIGNER: ADLER FOUNDATION PLAN

HISTORICAL PRESERVATION SUBMITTAL JAK PROJECT NUMBER: 17047-00

JAK PROJECT MANAGER: N23217 STONE RIDGE DRIVE, SUITE 300 WAUKESHA, WI 5318 jakretter.com | office 262 513 9800 | fax 262 513 981 Aveneecon | effec 207317.9600 | for 267317.9601 | DK DATE SUBJECT BLDG. NO. RELEASE NO. SIZE

	CAST-IN-PLACE REINFORCED CONCRETE: 1. CONCRETE WORK SHALL CONFORM TO REFERENCED EDITION OF ACI 318 "BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE" AND ACI 302 "GUIDE FOR CONCRETE FLOOR AND SLAB CONSTRUCTION".	WOOD FRAMING: 1. DESIGN, FABRICATION, CONSTRUCTION", AMEF
CODE AS SPECIFIED IN DESIGN DATA OSHA REGULATIONS	 CONTRACTOR SHALL ELECTRONICALLY SUBMIT STEEL REBAR SHOP DRAWINGS FOR APPROVAL PRIOR TO CONSTRUCTION. CONTRACTOR SHALL REVIEW AND STAMP ALL SHOP DRAWINGS BEFORE SUBMITTING TO THE ARCHITECT. 	2. DESIGN, FABRICATION, SPECIFICATIONS'', AME
2. THE GENERAL CONTRACTOR AND SUBCONTRACTORS SHALL BE FAMILIAR WITH THE ENTIRE SET OF CONSTRUCTION DOCUMENTS (ARCHTECTORAL, CIVIL, ELECTRICAL, PLUMBING, STRUCTURAL, ETC.) IN ORDER TO PROVIDE ALL CONSTRUCTION AND MATERIALS FOR THIS PROJECT.	3. GROUT BELOW BASE PLATES AND BEARING PLATES SHALL BE NON-SHRINK, NON-METALLIC GROUT	3. PLYWOOD SHEATHING APA GRADE-TRADEMAR
 THE CONTRACTOR SHALL REFER TO OTHER DRAWINGS CONTAINED IN THE CONSTRUCTION DOCUMENTS FOR ADDITIONAL SPECIFIED MEMBERS, DIMENSIONS, ELEVATIONS, DETAILS, OPENINGS, INSERTS, SLEEVES, DEPRESSIONS, ETC. NOT SHOWN ON THE STRUCTURAL DRAWINGS REQUIRED TO CONSTRUCT THIS PROJECT. 	 STEEL REINFORCING BARS SHALL CONFORM TO ASTM A615 (GRADE 60). PLAIN WELDED WIRE FABRIC SHALL CONFORM TO ASTM A1064. CONTRACTOR SHALL PROVIDE SUITABLE WIRE SPACERS, CHAIRS, TIES, ETC FOR SUPPORTING REINFORCING STEEL IN THE PROPER POSITION WHILE 	4. PLYWOOD SHEATHING SUPPORTS. STAGGER
4. DETAILS SHOWN ON STRUCTURAL DRAWINGS SHALL BE APPLICABLE TO ALL PORTIONS OF THE CONTRACT DOCUMENTS UNLESS NOTED OTHERWISE.	PLACING CONCRETE.	5. PLYWOOD SHEATHING SUPPORTS UNI ESS NO
5. NOTES AND DETAILS ON DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL STRUCTURAL NOTES AND TYPICAL DETAILS.	 PROVIDE 1/2" EXPANSION JOINT MATERIAL AT INTERIOR LOCATIONS WHERE SLABS ABUT WALLS, COLUMNS, AND OTHER VERTICAL SURFACES UNLESS NOTED OTHERWISE 	6. ANY PLYWOOD SHEAT
 DO NOT SCALE PLANS. IN NO CASE SHALL STRUCTURAL ALTERATIONS OR WORK AFFECTING A STRUCTURAL MEMBER BE MADE UNLESS APPROVED BY THE STRUCTURAL 	8. PROVIDE A 1" CHAMFER ON EXPOSED CORNERS OF CONCRETE UNLESS NOTED OTHERWISE. TOP SURFACE OF WALLS SHALL FINISHED SMOOTH, UNLESS	7. PLYWOOD PANEL EDG LESS THAN 3/8" IN FRO
ENGINEER.	NOTED OTHERWISE. 9. DO NOT PLACE CONDUITS. PIPES. DUCTS. OR FIXTURES IN STRUCTURAL CONCRETE UNLESS NOTED OTHERWISE.	8. WOOD SILL PLATES A BE PRESSURE TREAT
THE SAFETY OF THE BUILDING AND WORKMEN DURING CONSTRUCTION (MEANS & METHODS OF CONSTRUCTION). THIS INCLUDES, BUT IS NOT LIMITED TO: SHORING, UNDERPINNING, TEMPORARY BRACING, ETC.	 SLEEVES, CONDUITS, OR PIPING PASSING THROUGH CONCRETE SLABS AND WALLS SHALL BE PLACED SO THAT THEY ARE NOT CLOSER THAN THREE DIAMETERS ON CENTER OR 4" MIN AND SO THAT THEY DO NOT DISPLACE DEINEORCING, DANKS OF OPENINGS OPERATED THAN 18" TOTAL WIDTH OF ALL 	9. MAXIMUM MOISTURE
OCONSTRUCTION DOCUMENTS SHOW DIMENSIONS AND ELEVATIONS TO SIGNIFICANT WORKING POINTS (COLUMN CENTERLINES, OUTSIDE FACE OF WALLS, TOP OF FRAMING MEMBERS, ETC.) MATERIAL SUPPLIERS AND DESIGNERS ARE RESPONSIBLE FOR ALL OTHER INFORMATION IN ORDER TO	DIAMETERS ON CENTER OR 4 MIN AND SO THAT THEY DO NOT DISPLACE REINFORCING. BANKS OF OPENINGS GREATER THAN 18 TOTAL WIDTH OF ALL OPENINGS EDGE-TO-EDGE MUS BE COORDINATED WITH STRUCTURAL ENGINEER.	10. 2x WOOD JOISTS SHA
DETAIL/FABRICATE THEIR WORK. CONTACT THE ARCHITECT WITH ANY DISCREPANCIES.	11. CONTROL JOINTS SHALL BE PLACED IN SLAB ON GRADE AND SLAB ON METAL DECK CONSTRUCTION WITHIN 24 HOURS OF INITIAL POUR. REFER TO PLAN NOTES FOR ADDITIONAL INFO.	 11. DO NOT EMBED WOOD 12. ALL BOLTS AND LAG S
DOCUMENTS, THE CONTRACTOR SHALL BRING THE DISCREPANCY TO THE ARCHITECTS ATTENTION IN WRITING IMMEDIATELY.	12. CONTRACTOR SHALL BE RESPONSIBLE FOR REPAIR OF ANY IRREGULARITIES OR DEFECTS IN CONCRETE SLABS (CRACKS, BUMPS, FLOOR CURLING, ETC.) BEFORE ANY FLOOR FINISHES ARE APPLIED.	LAG SCREW AND WO
EXISTING CONSTRUCTION/CONDITIONS: () ALL EXISTING COMPARING SHOWN ON THESE DRAWINGS IS BASED ON AVAILABLE DOCUMENTATION & FIELD ORSERVATION TO DATE. CONTRACTOR SHALL	13. REFER TO REINFORCEMENT DEVELOPMENT AND LAP SPLICE SCHEDULE FOR LAP SPLICES IN REINFORCING STEEL.	STAINLESS STEEL.
FIELD VERIFY ALL SIZES, DIMENSIONS, ELEVATIONS, AND CONFIGURATIONS OF EXISTING STRUCTURAL ELEMENTS (COLUMNS, BEAMS, WALLS, ETC.) AS NECESSARY TO PROPERLY INSTALL ALL NEW STRUCTURAL ELEMENTS AS SHOWN. COORDINATE DIFFERENCES BETWEEN FIELD CONDITIONS AND STRUCTURAL DRAWINGS WITH STRUCTURAL ENGINEER PRIOR TO PROCEEDING WITH WORK, AND PROCUREMENT/FABRICATION OF MATERIALS.	 STEEL REINFORCING SPLICES OF ADJACENT BARS SHALL BE STAGGERED SUCH THAT SPLICES ARE 4 FEET APART, MINIMUM. ALL LAPS IN REINFORCING STEEL SHALL BE CLASS "B" LAP SPLICES UNLESS OTHERWISE NOTED. CONTRACTOR SHALL HIRE A MATERIALS TESTING LABORATORY TO CAST AND TEST CONCRETE CYLINDERS. ALL TESTING SHALL BE IN ACCORDANCE WITH 	 MAKE NO SUBSTITUT STRUCTURAL ENGINE 15. TEMPORARY BRACING LOAD REARING STUD
 CONTRACTOR SHALL FIELD VERIFY EXISTING CONDITIONS AND NOTIFY ARCHITECT AND STRUCTURAL ENGINEER OF ANY CONFLICTS WITH CONSTRUCTION DOCUMENTS. 	ACI 318. RESULTS OF CYLINDER TESTS SHALL BE SUBMITTED TO THE ARCHITECT AND ENGINEER. CONCRETE TEST REPORTS SHALL STATE THE FOLLOWING INFORMATION:	RESIST LATERAL WIN MAY BE REMOVED ON
3. REMOVE AND REPLACE AND/OR MODIFY ALL EXISTING CONSTRUCTION (ARCHITECTURAL, STRUCTURAL, ELECTRICAL, AND MECHANICAL) AS REQUIRED IN ORDER TO PLACE NEW STRUCTURAL WORK SHOWN ON THE CONSTRUCTION DOCUMENTS. DO NOT MODIFY STRUCTURAL COMPONENTS UNLESS DETAILED ON THE CONSTRUCTION DOCUMENTS.	LOCATION ON PROJECT WHERE THE CONCRETE IS USED 7 DAY COMPRESSIVE STRENGTH 28 DAY COMPRESSIVE STRENGTH AIR CONTENT	WOOD FRAMER. 16. ARCHITECT AND CON APPROXIMATELY 3/16 LUMBER FROM THE E
ILLIS SOLELY THE CONTRACTOR'S RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND CONSTRUCTION SEQUENCE IN ORDER TO ENSURE THE SAFETY OF THE BUILDING AND WORKMEN DURING CONSTRUCTION (MEANS & METHODS OF CONSTRUCTION). THIS INCLUDES, BUT IS NOT LIMITED TO: SHORING, UNDERPINNING, TEMPORARY BRACING, ETC. CONTRACTOR SHALL DESIGN AND PROVIDE ALL SHORING REQUIRED TO SUPPORT EXISTING	SLUMP AMOUNT OF WATER ADDED ON JOB SITE MIX LISED	
CONSTRUCTION AND NEW CONSTRUCTION AS REQUIRED TO BUILD THIS PROJECT.	MIX עופט גוש 17. CONCRETE TEST REPORTS SHALL DIRECTLY STATE WHETHER OR NOT THE TEST RESULT COMPLIES WITH THE CONSTRUCTION DOCUMENTS AND	METAL PLATE CONNECTE 1. WOOD TRUSSES SHAL WOOD TRUSSES! DV 1
-OUNDATION AND EARTHWORK: 1. ALL EXTERIOR FOOTINGS MUST BEAR BELOW LOCAL FROST LINE RELATIVE TO ADJACENT FINISH EXTERIOR GRADE.	SPECIFICATIONS.	NATIONAL FOREST PF
2. DO NOT PLACE ANY FOOTINGS ON FROZEN SUBGRADE.	19. TIME BETWEEN CONCRETE BATCHING AND PLACEMENT SHALL BE IN ACCORDANCE WITH ASTM C94.	2. KUOF TRUSSES SHAL TOP CHORD LIVE L TOP CHORD DEAD
 DO NOT PLACE BACK FILL AGAINST BASEMENT WALLS UNTIL THE TOP AND BOTTOM OF THE WALL ARE ADEQUATELY BRACED BY THE SLAB ON OR ADE AND THE ELOOD FRAMMO AT THE TOP OF THE WALL 	20. CLASS C FLY ASH OR SLAG MAY BE SUBSTITUTED FOR CEMENT ON A POUND TO POUND BASIS. SUBMITTED MIX DESIGNS SHALL INDICATE SUBSTITUTION ARE AND IS SUBJECT TO ENGINEER APPROVAL.	BOTTOM CHORD L BOTTOM CHORD D
GRADE AND THE FLOOK FRAMING AT THE TOP OF THE WALL. 5. REMOVE ANY EXISTING CONCRETE 2'-0" BELOW NEW CONCRETE FOOTINGS AND SLABS ON GRADE, UNLESS NOTED OTHERWISE.	21. ALL CONCRETE SLABS SHALL BE CURED PER ACI RECOMMENDATIONS FOR NO LESS THAN SEVEN DAYS OR AN APPROPRIATE CURING COMPOUND MAY BE APPLIED.	3. FLOOR TRUSSES SHA TOP CHORD LIVE L
5. SHORING/OR UNDERPINNING SHALL BE DESIGNED TO LIMIT HORIZONTAL AND VERTICAL MOVEMENT OF EXISTING CONSTRUCTION TO 1/4" MAXIMUM IN ANY DIRECTION.	22. CALCIUM CHLORIDE OR ADMIXTURES CONTAINING CALCIUM CHLORIDE ARE NOT PERMITTED IN ANY CONCRETE MIX.	BOTTOM CHORD L BOTTOM CHORD L BOTTOM CHORD D
7. CENTER PIER AND COLUMN FOOTINGS ON COLUMN CENTERLINES AND WALL FOOTINGS ON WALL CENTERLINES UNLESS SPECIFICALLY NOTED	23. PROVIDE THE FOLLOWING CLEAR COVER DISTANCES FOR REINFORCEMENT IN CONCRETE:	4. IN ADDITION TO THE L CONDITIONS AS SHOW
3. ALL BACK FILL WITHIN 3'-0" OF RETAINING WALLS AND BASEMENT WALLS SHALL BE FREE DRAINING GRANULAR MATERIAL APPROVED BY A SOILS	CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH: 3" CONCRETE EXPOSED TO EARTH OR WEATHER:	5. ROOF TRUSSES SHAL
ENGINEER AND COMPACTED TO 90% STANDARD PROCTOR.	NO. 6 THROUGH NO. 18 BARS2"NO. 5 BAR AND SMALLER1 1/2	6. FLOOR TRUSSES SHA
AND BEST JUDGMENT OF A SUITABLE BEARING STRATUM. ACTUAL GRADE CONDITIONS AND SUITABLE BEARING STRATUM MUST BE VERIFIED BY THE CONTRACTOR AND A SOILS ENGINEER AT THE TIME OF EXCAVATION.	CONCRETE NOT EXPOSED TO WEATHER OR IN CONTACT WITH GROUND: SLABS, WALLS, JOISTS: NO. 11 BAR AND SMALLER 1"	7. FABRICATION, HANDL SHALL BE DONE IN A V ANY WAY WITH OUT T
10. FOOTING EXCAVATIONS MUST EXTEND TO COMPETENT BEARING MATERIAL. CONTRACTOR SHALL HIRE A SOILS ENGINEER TO FIELD VERIFY NET ALLOWABLE SOIL BEARING CAPACITY STATED ON THESE CONSTRUCTION DOCUMENTS AND IN GEOTECHNICAL REPORT FOR THIS PROJECT. IF	BEAMS AND COLUMNS 1 1/2" 24. CONTRACTOR SHALL USE SMOOTH FORMS FOR EXPOSED CONCRETE SURFACES. ANY CONCRETE SURFACE REPAIRS SHALL BE PERFORMED BY THE	8. WOOD TRUSS DESIGN
SUITABLE BEARING STRATUM DUES NOT EXIST AT FOOTING ELEVATIONS STATED ON CONSTRUCTION DOCUMENTS, EXCAVATIONS SHALL BE EXTENDED UNTIL SOIL WITH STATED BEARING CAPACITY IS REACHED. PLACE COMPACTED FILL BELOW FOOTINGS OR EXTEND FOOTINGS DOWN TO SUITABLE BEARING STRATUM. ENGINEERED FILL BELOW SLABS ON GRADE AND FOOTINGS SHALL BE FREE DRAINING GRANULAR MATERIAL	CONTRACTOR AS REQUIRED. REPAIR AND PATCH DEFECTIVE AREAS WITH PROPRIETARY PATCHING COMPOUND IMMEDIATELY AFTER REMOVAL OF FORMS.	9. CONTRACTOR SHALL
COMPACTED TO 95% MODIFIED PROCTOR AND PLACED PER THE SOIL ENGINEERS RECOMMENDATIONS. ALL FIELD CONDITIONS THAT WILL AFFECT DESIGN AS PRESENTED MUST BE COORDINATED WITH STRUCTURAL ENGINEER.	STRUCTURAL STEEL: 1. DESIGN, FABRICATION, AND ERECTION SHALL CONFORM TO AISC (AMERICAN INSTITUTE OF STEEL CONSTRUCTION) "STEEL CONSTRUCTION MANUAL". EDITIONS AS SPECIFIED BY CODE.	STAMP ALL SHOP DRA
11. REFER TO DESIGN DATA FOR DESCRIPTION OF SOIL CONDITIONS, GEOTECHNICAL RECOMMENDATIONS, AND DESIGN VALUES.	 STEEL DETAILING AND CONNECTIONS SHALL CONFORM TO THE REQUIREMENTS OF AISC 360 "SPECIFICATIONS FOR STRUCTURAL STEEL BUILDINGS". 	THE NAME, ADDRE SLOPE OR DEPTH, LOCATION OF ALL
2. WHERE NEW FOOTINGS ADDITENSING FOOTINGS, STEP OR THICKEN THE NEW FOOTING AS REQUIRED TO HAVE NEW BOTT/FTG ELEVATION MATCH EXISTING BOTT/FTG ELEVATION. CONTRACTOR SHALL FIELD VERIFY EXISTING BOTT/FTG ELEVATION.	 WELDING SHALL BE PERFORMED BY CERTIFIED WELDERS HOLDING CURRENT AWS CERTIFICATES IN THE TYPES OF WELDING SPECIFIED ON THESE 	ALL DESIGN LOADS
	CONSTRUCTION DOCUMENTS. 4. CONTRACTOR SHALL ELECTRONICALLY SUBMIT STEEL SHOP DRAWINGS FOR APPROVAL PRIOR TO FABRICATION. CONTRACTOR SHALL REVIEW AND	EACH REACTION F METAL CONNECTO LUMBER SIZE, SPE
	STAMP ALL SHOP DRAWINGS BEFORE SUBMITTING TO THE ARCHITECT.	CONNECTION REC CALCULATED DEF SPECIFY ALL TRUE
	 CUNTRACTOR SHALL DETERMINE, FURNISH AND INSTALL ANY TEMPORARY BRACING OR GUYS REQUIRED TO ERECT STEEL MEMBERS. TEMPORARY BRACING SHALL BE LEFT IN PLACE UNTIL THE PERMANENT STRUCTURE IS IN PLACE AND SECURE. REFER TO PLAN NOTES FOR DESCRIPTION OF LATERAL SYSTEM. 	SPECIFY AND SHO
	6. PROVIDE 3/16" CAP PLATE AT THE ENDS OF ALL EXPOSED TUBE AND PIPE MEMBERS, UNLESS NOTED OTHERWISE.	11. CONTRACTOR IS RES ACCORDANCE WITH T TRUSSES (HIB-91 BOO
	7. STAIRS, HANDRAILS, AND GUARDRAILS SHALL BE DESIGNED BY THE STEEL SUPPLIER. CONNECTIONS INTO SURROUNDING STRUCTURE SHALL BE APPROVED BY STRUCTURAL ENGINEER. CALCULATIONS OF ALL STAIR COMPONENTS MUST BE SUPPLIED WITH STAIR SHOP DRAWINGS.	12. TRUSSES EXPOSED T
	8. ALL STEEL BEAMS SHALL BE FABRICATED WITH THE NATURAL CAMBER (WITHIN MILL TOLERANCE) IN THE UPWARD VERTICAL DIRECTION.	13. FLOOR TRUSS SPACI SUPPORT ALL LOADS
	9. THE STEEL SUPPLIER SHALL COORDINATE HIS WORK WITH THE STEEL JOIST SUPPLIER ON THE PROJECT.	14. DESIGN ROOF TRUSS SEPTEMBER 1. 2011 V
	FABRICATOR IS ALLOWED TO DETAIL THE CONNECTION BASED ON THE BEAM REACTIONS (WHERE SHOWN) SHOWN AND THE FOLLOWING A. ALL REACTIONS ARE SERVICE-LOAD LEVEL	15. ALL TRUSS TO TRUSS
	B. ASD SELECTION OF THE CONNECTION MATERIALS C. USE OF STANDARDS SHOWN ON CONSTRUCTION DRAWINGS DETAILS AS A GUIDE FOR CONNECTION SELECTION.	16. TRUSS FABRICATOR
	ALTERNATE CONNECTIONS FROM WHAT IS SPECIFIED ON THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED WITHOUT WRITTEN APPROVAL FROM THE STRUCTURAL ENGINEER.	
	11. PROVIDE STIFFENER PLATES ON BOTH SIDES OF BEAM WEBS AT ALL CONCENTRATED LOADS ABOVE AND BELOW A BEAM. UNLESS NOTED OTHERWISE, FRAME THE LARGEST BEAM OVER COLUMNS AT BEAM TO BEAM INTERSECTIONS.	

DESIGN, FABRICATION, AND CONSTRUCTION SHALL CONFORM TO THE CURRENT EDITION OF "NATIONAL DESIGN SPECIFICATION FOR WOOD

4. PLYWOOD SHEATHING SHALL BE ATTACHED TO WOOD FRAMING WITH THE LONG DIMENSION OF THE SHEATHING LAID PERPENDICULAR TO THE

7. PLYWOOD PANEL EDGES SHALL BEAR ON THE FRAMING SUPPORT MEMBERS AND BUTT ALONG THEIR CENTER LINES. NAILS SHALL BE PLACED NOT

8. WOOD SILL PLATES AND OTHER WOOD MEMBERS DIRECTLY EXPOSED TO MOISTURE OR IN DIRECT CONTACT WITH CONCRETE OR MASONRY SHALL

12. ALL BOLTS AND LAG SCREWS SHALL CONFORM TO ASTM A307 UNLESS NOTED OTHERWISE. USE STEEL WASHERS BETWEEN HEAD OF BOLT OR

13. ALL FASTENERS ATTACHING PRESSURE TREATED WOOD MEMBERS TO CONCRETE OR MASONRY SHALL BE HOT DIPPED GALVANIZED OR

14. MAKE NO SUBSTITUTIONS OF ANY PRODUCTS SPECIFIED ON ANY FRAMING PLANS WITHOUT THE DIRECT WRITTEN PERMISSION OF THE

15. TEMPORARY BRACING SHALL BE PROVIDED AND REMAIN IN PLACE UNTIL THE STRUCTURE IS COMPLETELY STABLIZED. TO RESIST BUCKLING OF

16. ARCHITECT AND CONTRACTOR SHALL DETAIL AND CONSTRUCT BUILDING FINISHES TO ACCOMMODATE AN EXPECTED BUILDING SHRINKAGE OF APPROXIMATELY 3/16" TO 3/8" PER FLOOR OF WOOD CONSTRUCTION. PROPER CARE SHALL BE TAKEN TO PREVENT STORED AND INSTALLED

. WOOD TRUSSES SHALL BE DESIGNED IN ACCORDANCE WITH THE CURRENT EDITIONS OF "DESIGN SPECIFICATIONS FOR METAL PLATE CONNECTED

4. IN ADDITION TO THE LOADS STATED ABOVE THE TRUSSES SHALL BE DESIGNED FOR ANY SNOW DRIFTING, MECHANICAL, AND/OR ANY SPECIAL LOAD CONDITIONS AS SHOWN ON STRUCTURAL PLANS AND AS REQUIRED BY THE BUILDING CODE AS SPECIFIED IN "DESIGN DATA" SECTION.

7. FABRICATION, HANDLING, STORAGE, AND ERECTION SHALL BE IN ACCORDANCE WITH "TRUSS PLATE INSTITUTION" RECOMMENDED PRACTICES AND

SHALL BE DONE IN A WORKMAN LIKE MANNER SO AS TO NOT DAMAGE THE TRUSSES. TRUSSES SHALL NOT BE CUT, ADDED ONTO OR ALTERED IN

8. WOOD TRUSS DESIGNER/SUPPLIER SHALL SUBMIT FORMAL STAMPED CALCULATIONS BY A REGISTERED ENGINEER IN THE STATE OF WISCONSIN FOR

9. CONTRACTOR SHALL ELECTRONICALLY SUBMIT TRUSS SHOP DRAWINGS FOR APPROVAL PRIOR TO FABRICATION. CONTRACTOR SHALL REVIEW AND

WOOD TRUSSES" BY TRUSS PLATE INSTITUTE (TPI) AND "NATIONAL DESIGN SPECIFICATIONS FOR STRESS-GRADE LUMBER AND ITS FASTENINGS" BY

LOAD BEARING STUDS, USE A CONTINUOUS 2x FRAMING MEMBER ATTACHED TO THE STUD WALL AT MID-HEIGHT. USE TEMPORARY X-BRACING TO

RESIST LATERAL WIND AND SEISMIC LOADS. PROVIDE ANY OTHER TEMPORARY BRACING DEEMED NECESSARY DURING CONSTRUCTION. BRACING MAY BE REMOVED ONCE THE SHEATHING IS APPLIED TO AT LEAST ONE SIDE OF THE STUDS. TEMPORARY BRACING IS THE RESPONSIBILITY OF THE

5. PLYWOOD SHEATHING SHALL BE FASTENED TO SUPPORTS w/ 10d NAILS SPACED AT 6" o/c AT PANEL EDGES AND 12" o/c AT INTERMEDIATE

CONSTRUCTION", AMERICAN FOREST AND PAPER ASSOCIATION.

APA GRADE-TRADEMARK OF THE AMERICAN PLYWOOD ASSOCIATION.

6. ANY PLYWOOD SHEATHING THAT IS EXPOSED TO MOISTURE SHALL BE PRESSURE TREATED.

9. MAXIMUM MOISTURE CONTENT IN ANY WOOD MEMBER SHALL NOT EXCEED 19%.

LAG SCREW AND WOOD. USE STEEL WASHERS BETWEEN NUT AND WOOD.

10. 2x WOOD JOISTS SHALL HAVE 1x3 SPF NO.2 CROSS BRIDGING AT 8'-0" o/c MAXIMUM.

LUMBER FROM THE ELEMENTS. DO NOT ALLOW LUMBER TO REST IN STANDING WATER.

2. ROOF TRUSSES SHALL BE DESIGNED FOR THE FOLLOWING LOADS:

3. FLOOR TRUSSES SHALL BE DESIGNED FOR THE FOLLOWING LOADS:

5. ROOF TRUSSES SHALL HAVE A MAXIMUM LIVE LOAD DEFLECTION OF L/360.

6. FLOOR TRUSSES SHALL HAVE A MAXIMUM LIVE LOAD DEFLECTION OF L/480.

STAMP ALL SHOP DRAWINGS BEFORE SUBMITTING TO THE ARCHITECT.

LUMBER SIZE, SPECIES, AND GRADE FOR EACH TRUSS MEMBER

SPECIFY ALL TRUSS TO TRUSS CONNECTIONS AND HANGERS.

TRUSSES (HIB-91 BOOKLET) AND THE CURRENT EDITION OF ANSI/TPI-1.

SUPPORT ALL LOADS SPECIFIED ON THESE PLANS AND BY CODE.

SPECIFY AND SHOW ALL PERMANENT TRUSS BRACING REQUIRED BY DESIGN.

16. TRUSS FABRICATOR SHALL FIELD VERIFY ALL SPAN DIMENSIONS BEFORE FABRICATING.

10. SHOP DRAWING SUBMISSIONS SHALL INCLUDE THE FOLLOWING INFORMATION: THE NAME, ADDRESS, PHONE NUMBER, AND FAX NUMBER OF THE SUPPLIER.

TOP CHORD LIVE LOAD REFER TO ROOF SNOW LOAD PLAN

TOP CHORD LIVE LOAD REFER TO BUILDING DESIGN LIVE LOADS

BOTTOM CHORD LIVE LOAD 10 PSF (NON CONCURRENT w/ TOP CHORD LIVE LOAD)

BOTTOM CHORD LIVE LOAD 10 PSF (NON CONCURRENT w/ TOP CHORD LIVE LOAD)

ANY WAY WITH OUT THE WRITTEN CONSENT OF THE TRUSS DESIGNER, ENGINEER, AND ARCHITECT.

ADJUSTMENTS TO LUMBER AND METAL CONNECTOR PLATE VALUES FOR CONDITIONS OF USE

CALCULATED DEFLECTION RATIO AND/OR MAXIMUM DEFLECTION FOR LIVE AND TOTAL LOAD

METAL CONNECTOR PLATE TYPE, SIZE, GAUGE, AND THE DIMENSIONAL LOCATION OF EACH CONNECTOR PLATE

11. CONTRACTOR IS RESPONSIBLE FOR ALL ERECTION PROCEDURES AND TEMPORARY TRUSS BRACING REQUIREMENTS DURING ERECTION IN ACCORDANCE WITH TPI'S COMMENTARY AND RECOMMENDATIONS FOR HANDLING, INSTALLING, AND BRACING METAL PLATE CONNECTED WOOD

13. FLOOR TRUSS SPACING SHOWN ON FRAMING PLANS ARE MAXIMUM SPACINGS. TRUSS DESIGNER SHALL REDUCE SPACING AS REQUIRED TO

14. DESIGN ROOF TRUSSES TO RESIST ALL WIND LOADS INCLUDING UPLIFT AS REQUIRED BY THE INTERNATIONAL BUILDING CODE-2009 WITH SEPTEMBER 1, 2011 WISCONSIN AMENDED I-CODE INSERTS. MINIMUM NET UPLIFT = 10 PSF, 20 PSF AT CANOPIES & OVERHANGS.

12. TRUSSES EXPOSED TO MOISTURE SHALL BE CONSTRUCTED OF PRESSURE TREATED WOOD AND GALVANIZED METAL PLATES.

CONNECTION REQUIREMENTS FOR TRUSS TO TRUSS GIRDER, TRUSS PLY TO PLY, AND FIELD SPLICES.

15. ALL TRUSS TO TRUSS CONNECTIONS ARE TO BE DESIGNED, DETAILED, AND SUPPLIED BY THE TRUSS SUPPLIER.

JBMIT STEEL REBAR SHOP DRAWINGS FOR APPROVAL PRIOR TO CONSTRUCTION. CONTRACTOR SHALL REVIEW 2. DESIGN, FABRICATION, AND CONSTRUCTION OF ALL PLYWOOD FRAMING SHALL CONFORM TO THE CURRENT EDITION OF "PLYWOOD DESIGN"

3. PLYWOOD SHEATHING SHALL CONFORM TO THE CURRENT EDITION OF "U.S. PRODUCT STANDARD PS-1" FOR SOFTWOOD PLYWOOD AND BEAR THE G PLATES SHALL BE NON-SHRINK, NON-METALLIC GROUT

INTERNATIONAL BUILDING INTERNATIONAL EXISTING ASCE 7-05 MIN DESIGN LOA	RDS: CODE - 2009 WI BUILDING CODE ADS FOR BUILDI	ITH SEPTEME E - 2009 INGS AND OT	BER 1, 2011 THER STRU	WISCONSIN CTURES, AS	AMENE CE/SEI	DED I-CODE INSEF	RTS
STRUCTURAL DESIGN STAND ACI 318 BUILDING CODE RE ACI 530/530.1 BUILDING CO ANSI/AISC 360 SPECIFICAT AWS D1.1/D1.1M STRUCTUF NDS-NATIONAL DESIGN SP NDS-NATIONAL DESIGN SP AISI S100 NORTH AMERICA AISI S213 NORTH AMERICA	ARDS (DESIGN EQUIREMENTS F DE REQUIREME IONS FOR STRL RAL WELDING C ECIFICATIONS F ECIFICATION ST N SPECIFICATION N SPECIFICATION	SHALL CONF FOR STRUCT ENTS AND SP JCTURAL STE CODE-STEEL FOR WOOD C UPPLEMENT, ON FOR THE ON FOR COLI	FORM TO TH TURAL CON PECS FOR M EEL BUILDIN CONSTRUC , DESIGN V/ DESIGN OF D-FORMED	HE CURRENT CRETE AND MASONRY ST NGS TION ASD/LR ALUES FOR N COLD-FORM STEEL FRAM	EDITIC Comme Ructu FD Nood C Med Sti Ming-La	IN UNDER THE AP INTARY RES (AND RELATE CONSTRUCTION EEL STRUCTURAL TERAL DESIGN	PLICABLE CODE) ED COMMENTARIES) MEMBERS
	I	BUILDING DE	SIGN LOAD	DS/CRITERIA			
DESIGN DEAD LOADS: FIRST FLOOR DEAD LOAD (20 nsf
UPPER FLOOR DEAD LOAD ROOF DEAD LOAD (ASSUM	(ASSUMED) ED)						20 psf 20 psf
DESIGN LIVE LOADS: FLOOR FRAMING (RETAIL, (STAIRWAYS, CORRIDORS, DECKS	OFFICE, RESTA LOBBIES (OTHE	URANT, REC R AREAS)	REATIONAL	-)			100 psf 100 psf 100 psf
HANDRAIL ASSEMBLIES & GU, 200LB LOAD OR 50 PLF LOA & TO TRANSFER THIS LOAI	ARDS AD APPLIED IN A D THROUGH SU	ANY DIRECTIO	ON AT TOP THE STRUC	of Handra Ture	IL ASSE	MBLY OR GUARD	
ROOF SNOW LOADS & DESIG	N DATA:					25 pcf (DALA	
FLAT ROOF SNOW LOAD (P	- ₽f) = (0.7*Ce*Ct*ls { (Ce)	s*Pg)				20 poi (DALA	24.5 psf
SNOW LOAD IMPORTANCE	FACTOR (Is)						1.0 1.0
GROUND SNOW (Pg)	GE						35 psf 0
SLOPED ROOF FACTOR (C	S)						1.0
WIND DESIGN DATA: WIND IMPORTANCE FACTO)R (lw)						1.0
BASIC WIND SPEED (3-SEC WIND DIRECTIONALITY FAC	OND GUST) CTOR (Kd)						90 MPH 0.85
MEAN ROOF HEIGHT WIND EXPOSURE CATEGOI	RY						21 FT B
WIND EXPOSURE CLASSIFI							ENCLOSED
BUILDING LENGTH (L)	FFICIENT						+/-0.18 25.25 FT
LEAST WIDTH (B)	OSURE COEFFI	CIENT Kh (CA	ASE 1)				19 FT 0 701
VELOCITY PRESSURE EXP	OSURE COEFFI	CIENT Kh (CA	ASE 2)				0.636
TOPOGRAPHIC FACTOR (K	zt)						10
EDGE STRIP (a)							3.0 FT
EDGE STRIP (a) END ZONE (2a)							3.0 FT 6.0 FT
EDGE STRIP (a) END ZONE (2a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD	DING				ſ	METHOD 1 (SIMPL	3.0 FT 6.0 FT IFIED PROCEDURE)
EDGE STRIP (a) END ZONE (2a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD	DDING SURFACE PRES	SSURE		٦	ſ	METHOD 1 (SIMPL	3.0 FT 6.0 FT IFIED PROCEDURE)
EDGE STRIP (a) END ZONE (2a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD ROOF AREA	DDING SURFACE PRES	SSURE 50 SF	100 SF		ſ	Method 1 (Simpl	3.0 FT 6.0 FT IFIED PROCEDURE)
EDGE STRIP (a) END ZONE (2a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD ROOF AREA NEGATIVE ZONE 1 NEGATIVE ZONE 2	DDING SURFACE PRES 10 SF -13.3 psf -23.2 psf	SSURE 50 SF -12.5 psf -18.9 psf	100 SF -12.1 psi -17.0 psi	f f	ſ	Method 1 (Simpl	3.0 FT 6.0 FT IFIED PROCEDURE)
EDGE STRIP (a) END ZONE (2a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD ROOF AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 POSITIVE ALL ZONES	DING SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf 10.0 psf	50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf	100 SF -12.1 pst -17.0 pst -26.9 pst 10.0 psf	F F	ſ	Method 1 (Simpl	3.0 FT 6.0 FT IFIED PROCEDURE)
EDGE STRIP (a) END ZONE (2a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD ROOF AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 3	DING SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf 10.0 psf -27.2 psf -45.7 psf	SSURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf	100 SF -12.1 psi -17.0 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi		ſ	Method 1 (Simpl	3.0 FT 6.0 FT IFIED PROCEDURE)
EDGE STRIP (a) END ZONE (2a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD ROOF AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 3	DDING SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf 10.0 psf -27.2 psf -27.2 psf -45.7 psf SURFACE PRES	SSURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf SSURE	100 SF -12.1 psi -17.0 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi		ſ	Method 1 (Simpl	3.0 FT 6.0 FT IFIED PROCEDURE)
EDGE STRIP (a) END ZONE (2a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD ROOF AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 3 WALL AREA NEGATIVE ZONE 4	DING SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf 10.0 psf -27.2 psf -45.7 psf SURFACE PRES 10 SF -15.8 psf	SSURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -35.3 psf SSURE 100 SF -13.6 psf	100 SF -12.1 psi -17.0 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi 500 SF -12.1 psi		ſ	Method 1 (Simpl	3.0 FT 6.0 FT IFIED PROCEDURE)
EDGE STRIP (a) END ZONE (2a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD ROOF AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 3 <u>WALL</u> AREA NEGATIVE ZONE 4 NEGATIVE ZONE 4	DDING SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf 10.0 psf -27.2 psf -27.2 psf -45.7 psf SURFACE PRES 10 SF -15.8 psf -19.5 psf 14.6 psf	SSURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf SSURE 100 SF -13.6 psf -15.1 psf 12.4 psf	100 SF -12.1 psi -17.0 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi -30.9 psi -12.1 psi 10.9 psf		ſ	Method 1 (Simpl	3.0 FT 6.0 FT IFIED PROCEDURE)
EDGE STRIP (a) END ZONE (2a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 3 WALL AREA NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4&5 EARTHQUAKE DESIGN DATA:	DDING SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf 10.0 psf -27.2 psf -45.7 psf SURFACE PRES 10 SF -15.8 psf -19.5 psf 14.6 psf	SSURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -35.3 psf SSURE 100 SF -13.6 psf -15.1 psf 12.4 psf	100 SF -12.1 psi -17.0 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi 500 SF -12.1 psi 10.9 psf		ſ	Method 1 (Simpl	3.0 FT 6.0 FT IFIED PROCEDURE)
IIII: EDGE STRIP (a) IIII: EDGE STRIP (a) IIII: END ZONE (2a) IIII: EDGE IONE (2a) IIII: EDGE IONE IONE & CLAD ROOF AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 5 POSITIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE 2 POSITIVE ZONE 5 POSITIVE 2 POSITIVE ZONE 5 POSITIVE 2 POSITIVE 2 POSITIVE ZONE 5 POSITIVE 2 POSITIVE 2 POSI	DDING SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf 10.0 psf -27.2 psf -45.7 psf SURFACE PRES 10 SF -15.8 psf -19.5 psf 14.6 psf CTOR (le)	SSURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf SSURE 100 SF -13.6 psf -12.4 psf	100 SF -12.1 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi 500 SF -12.1 psi 10.9 psf		ſ	Method 1 (Simpl	II O 3.0 FT 6.0 FT IFIED PROCEDURE)
IIII: EDGE STRIP (a) IIII: EDGE STRIP (a) IIII: END ZONE (2a) IIII: ESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD ROOF AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 3 IIIII: AREA NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 4&5 EARTHQUAKE DESIGN DATA: IIIIII: COCUPANCY CATEGORY IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DDING SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf 10.0 psf -27.2 psf -45.7 psf SURFACE PRES 10 SF -15.8 psf -19.5 psf 14.6 psf CTOR (le) ERATIONS AT S FRATIONS AT S	SSURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf SSURE 100 SF -13.6 psf -15.1 psf 12.4 psf	100 SF -12.1 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi -30.9 psi -12.1 psi 10.9 psf		ſ	Method 1 (Simpl	II 3.0 FT 6.0 FT IFIED PROCEDURE) II 1 0.107 0.044
IIII: EDGE STRIP (a) IIII: END ZONE (2a) IIII: END ZONE (2a) IIII: EDGE STRIP (2a) IIII: EDGE STRIP IIII: EDGE STRIP IIIII: EDGE STRIP IIII: EDGE STRIP IIII: EDGE STRIP IIII: EDGE STRIP IIII: EDGE STRIP IIIII: EDGE STRIP IIIIII: EDGE STRIP IIIIIII: EDGE STRIP IIIIIII: EDGE STRIP III	DDING SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf 10.0 psf -27.2 psf -45.7 psf -45.7 psf SURFACE PRES 10 SF -15.8 psf -19.5 psf 14.6 psf CTOR (le) ERATIONS AT S ERATIONS AT (SSURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf SSURE 100 SF -13.6 psf -15.1 psf 12.4 psf	100 SF -12.1 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi -30.9 psi -12.1 psi 10.9 psf		ſ	METHOD 1 (SIMPL	II 3.0 FT 6.0 FT IFIED PROCEDURE) II 1 0.107 0.044 D
IIII: EDGE STRIP (a) IIII: END ZONE (2a) IIII: END ZONE (2a) IIII: ESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD ROOF AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 3 IIIII: AREA NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 4&5 EARTHQUAKE DESIGN DATA: IIIIII: CLASSIFICATIONS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DDING SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf 10.0 psf -27.2 psf -45.7 psf -45.7 psf SURFACE PRES 10 SF -15.8 psf -19.5 psf 14.6 psf CTOR (le) LERATIONS AT S LE	SSURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf SSURE 100 SF -13.6 psf -15.1 psf 12.4 psf SHORT PERIO (1) SECOND F ENT AT SHOR ENT AT (1) SE	100 SF -12.1 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi -30.9 psi -12.1 psi 10.9 psf 10.9 psf DDS (Ss) PERIODS (S COND PER	F F F F 1) 5 (Sds) IODS (Sd1)		METHOD 1 (SIMPL	II 3.0 FT 6.0 FT IFIED PROCEDURE) II 1 0.107 0.044 D 0.114 .070
IIII EDGE STRIP (a) IIII END ZONE (2a) IIII DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD ROOF AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 3 WALL AREA NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 SEISMIC IMPORTANCE FAC IIIII MPORTANCE FAC IIIII MPORTANCE FAC IIIII MPORTANCE FAC IIIII MPORTANCE FAC IIIII MPORTANCE FAC IIIII CLASSIFICATIONS IIIE CLASSIFICATIONS IIIIE SEISMIC DESIGN CATEGOR IIIII DESIGN SPECTRAL RESPO IIIIII DESIGN SPECTRAL RESPO IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DDING SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf -34.3 psf -34.3 psf -34.3 psf -34.3 psf -34.5 psf -10.5 psf -15.8 psf -19.5 psf 14.6 psf CTOR (le) LERATIONS AT S	SURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf 3SURE 100 SF -13.6 psf -15.1 psf 12.4 psf SHORT PERIC 1) SECOND F ENT AT SHOR ENT AT SHOR ENT AT SHOR	100 SF -12.1 psi -17.0 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi 500 SF -12.1 psi 10.9 psf DDS (Ss) PERIODS (S COND PER	1) 5 (Sds) IODS (Sd1)		METHOD 1 (SIMPL	II 3.0 FT 6.0 FT IFIED PROCEDURE) II 1 0.107 0.044 D 0.114 .070 B NOT SPECIFICALLY
IIII: EDGE STRIP (a) IIII: END ZONE (2a) IIII: DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD ROOF AREA NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 3 VERHANG ZONE 3 IIIII: AREA NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 SEISMIC IMPORTANCE FAC IIIIII: ACCEL MAPPED SPECTRAL ACCEL IIIIII: SITE CLASSIFICATIONS IIIIE: SIGN SPECTRAL RESPO IIIII: SEISMIC DESIGN CATEGOF IIIII: SEISMIC DESIGN CATEGOF IIIIII: SEISMIC DESIGN CATEGOF IIIIIII: SEISMIC DESIGN CATEGOF IIIIIIIII: SEISMIC DESIGN CATEGOF IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf 10.0 psf -27.2 psf -45.7 psf SURFACE PRES 10 SF -15.8 psf -19.5 psf 14.6 psf CTOR (le) LERATIONS AT (INSE COEFFICIE NSE COEFFICIE NSE COEFFICIE NSE COEFFICIE SISTING SYSTE	SSURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -35.3 psf SSURE 100 SF -13.6 psf -15.1 psf 12.4 psf SHORT PERIC 1) SECOND F ENT AT SHOR ENT AT (1) SE M	100 SF -12.1 psi -17.0 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi -30.9 psi -12.1 psi 10.9 psf DDS (Ss) PERIODS (S RT PERIODS (S COND PER	1) 5 (Sds) IODS (Sd1)		METHOD 1 (SIMPL	II 3.0 FT 6.0 FT IFIED PROCEDURE) IFIED PROCEDURE) II 1 0.107 0.044 D 0.114 0.70 B NOT SPECIFICALLY SEISMIC RESTANCE 0.038W KIPS
III. EDGE STRIP (a) III. END ZONE (2a) III. DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD ROOF AREA NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 3 WALL AREA NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 4&5 EARTHQUAKE DESIGN DATA: OCCUPANCY CATEGORY SEISMIC IMPORTANCE FAC MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL DESIGN SPECTRAL RESPO DESIGN BASE SHEAR BASIC SEISMIC-FORCE-RES DESIGN BASE SHEAR 	DING SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf -34.3 psf -27.2 psf -45.7 psf -45.7 psf -15.8 psf -19.5 psf -19.5 psf 14.6 psf CTOR (le) ERATIONS AT (NSE COEFFICIE NSE COEFFICIE SISTING SYSTEI FICIENT (Cs) COEFFICIENT	SSURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf SSURE 100 SF -13.6 psf -15.1 psf 12.4 psf SHORT PERIO (1) SECOND F ENT AT SHOR ENT AT (1) SE M	100 SF -12.1 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi -30.9 psi -12.1 psi 10.9 psf DDS (Ss) PERIODS (S COND PER	1) 6 (Sds) IODS (Sd1)		METHOD 1 (SIMPL	II 3.0 FT 6.0 FT IFIED PROCEDURE) IFIED PROCEDURE) II 1 0.107 0.044 D 0.114 .070 B NOT SPECIFICALLY SEISMIC RESTANCE 0.038W KIPS 0.038
III. EDGE STRIP (a) III. END ZONE (2a) III. DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD ROOF AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 3 VERHANG ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 SEISMIC IMPORTANCE FAC III. MAPPED SPECTRAL ACCEL III. MAPPED SPECTRAL ACCEL III. SITE CLASSIFICATIONS III. DESIGN SPECTRAL RESPO III. DESIGN BASE SHEAR III. SEISMIC RESPONSE COEFF III. SEISMIC RESPONSE COEFF III. SEISMIC RESPONSE COEFF III. RESPONCE MODIFICATION III. ANALYSIS PROCEDURE FO III. DING IS IN MILWAUKEE	SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf -27.2 psf -45.7 psf SURFACE PRES 10.0 psf -27.2 psf -45.7 psf SURFACE PRES 10.5 psf -15.8 psf -19.5 psf 14.6 psf SISTIONS AT SUBJECTOR (Ie) SISTING SYSTEM PICIENT (Cs) COEFFICIENT (Cs) <td>SSURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf SSURE 100 SF -13.6 psf 12.4 psf SHORT PERIO 1) SECOND F ENT AT SHOR ENT AT SHOR M JIGN</td> <td>100 SF -12.1 psi -17.0 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi -12.1 psi 10.9 psf DDS (Ss) PERIODS (S COND PER</td> <td>1) 5 (Sds) IODS (Sd1)</td> <td>EQU</td> <td>METHOD 1 (SIMPL STRUCTURE DETAILED FOR S</td> <td>II 3.0 FT 6.0 FT IFIED PROCEDURE) IFIED PROCEDURE) II 1 0.107 0.044 D 0.114 .070 B NOT SPECIFICALLY SEISMIC RESTANCE 0.038W KIPS 0.038 3 L FORCE ANALYSIS</td>	SSURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf SSURE 100 SF -13.6 psf 12.4 psf SHORT PERIO 1) SECOND F ENT AT SHOR ENT AT SHOR M JIGN	100 SF -12.1 psi -17.0 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi -12.1 psi 10.9 psf DDS (Ss) PERIODS (S COND PER	1) 5 (Sds) IODS (Sd1)	EQU	METHOD 1 (SIMPL STRUCTURE DETAILED FOR S	II 3.0 FT 6.0 FT IFIED PROCEDURE) IFIED PROCEDURE) II 1 0.107 0.044 D 0.114 .070 B NOT SPECIFICALLY SEISMIC RESTANCE 0.038W KIPS 0.038 3 L FORCE ANALYSIS
EDGE STRIP (a) END ZONE (2a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 3 WALL AREA NEGATIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 4&5 EARTHQUAKE DESIGN DATA: OCCUPANCY CATEGORY SEISMIC IMPORTANCE FAC MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL DESIGN SPECTRAL RESPO DESIGN SPECTRAL RESPO DESIGN BASE SHEAR	SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf -27.2 psf -45.7 psf SURFACE PRES 10 SF -15.8 psf -19.5 psf 14.6 psf SURFACE PRES SURFACE PRES 10 SF -27.2 psf -45.7 psf SURFACE PRES 10 SF -19.5 psf 14.6 psf NSE COEFFICIE NSE COEFFICIE NSE COEFFICIE SISTING SYSTEI FICIENT (Cs) COEFFICIENT OR PR SEISMIC DES COUNTY	SURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf SSURE 100 SF -13.6 psf -15.1 psf 12.4 psf SHORT PERIC 1) SECOND F ENT AT SHOR ENT AT (1) SE M HGN	100 SF -12.1 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi -30.9 psi -12.1 psi 10.9 psf DDS (Ss) PERIODS (S COND PER	1) 5 (Sds) IODS (Sd1)	EQU	METHOD 1 (SIMPL STRUCTURE DETAILED FOR S	II 3.0 FT 6.0 FT IFIED PROCEDURE) IFIED PROCEDURE) II 1 0.107 0.044 D 0.114 0.107 0.044 D 0.114 0.70 B NOT SPECIFICALLY SEISMIC RESTANCE 0.038W KIPS 0.038 3 L FORCE ANALYSIS 10 PCF (ASSUMED)
EDGE STRIP (a) END ZONE (2a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 3 OVERHANG ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 SEISMIC IMPORTANCE FAC MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL MAPPED SPECTRAL RESPO DESIGN SPECTRAL RESPO DESIGN SPECTRAL RESPO DESIGN BASE SHEAR	SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf -27.2 psf -45.7 psf SURFACE PRES 10.0 psf -27.2 psf -45.7 psf 10 SF -15.8 psf 14.6 psf SURFACE PRES 10 SF -15.8 psf 14.6 psf SUBRE COEFFICIE NSE COEFFICIE NSE COEFFICIE NSE COEFFICIE SISTING SYSTEI FICIENT (Cs) COEFFICIENT R SEISMIC DES E COUNTY	SSURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf SSURE 100 SF -13.6 psf 12.4 psf SHORT PERIO 1) SECOND F ENT AT SHOR ENT AT (1) SE M HGN	100 SF -12.1 psi -17.0 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi -12.1 psi 10.9 psf DDS (Ss) PERIODS (S RT PERIODS COND PER	1) 5 (Sds) IODS (Sd1)	EQU	METHOD 1 (SIMPL STRUCTURE DETAILED FOR S JIVALENT LATERA	II 3.0 FT 6.0 FT IFIED PROCEDURE) IFIED PROCEDURE) II 1 1 1 1 1 1 1 1 1 1 1 1 1
III. EDGE STRIP (a) III. END ZONE (2a) III. DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD ROOF AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 3 VERHANG ZONE 4 NEGATIVE ZONE 4 DOSITIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 5 POSITIVE ZONE 5 POSITIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 5 POSITIVE ZONE 5 POSITIVE ZONE 5 POSITIVE ZONE 5 POSITIVE ZONE 5 POSITIVE 2 NEGATIVE 2 N	SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf -27.2 psf -45.7 psf SURFACE PRES 10.0 psf -27.2 psf -45.7 psf 10 SF -15.8 psf 14.6 psf SURFACE PRES 10 SF -15.8 psf 14.6 psf SISTIONS AT SUBJE NSE COEFFICIE NSE COEFFICIE NSE COEFFICIE SISTING SYSTER FICIENT (CS) COEFFICIENT PR SEISMIC DES E COUNTY RE LLS)	SSURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf SSURE 100 SF -13.6 psf 12.4 psf SHORT PERIO 1) SECOND F ENT AT SHOR ENT AT SHOR M JIGN	100 SF -12.1 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi -12.1 psi 10.9 psf DDS (Ss) PERIODS (S RT PERIODS (S COND PER	1) 5 (Sds) IODS (Sd1)	EQU	METHOD 1 (SIMPL STRUCTURE DETAILED FOR S JIVALENT LATERA 40 PSF/FT OF 60 PSF/FT OF	II 3.0 FT 6.0 FT IFIED PROCEDURE) IFIED PROCEDURE) II 1 1 1 1 1 1 1 1 1 1 1 1 1
EDGE STRIP (a) END ZONE (2a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 3 EARTHQUAKE DESIGN DATA: MEGATIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 4&5 EARTHQUAKE DESIGN DATA: OCCUPANCY CATEGORY SEISMIC IMPORTANCE FAC MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL	SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf -27.2 psf -45.7 psf SURFACE PRES 10.0 psf -27.2 psf -45.7 psf 10 SF -15.8 psf 14.6 psf SURFACE PRES 10 SF -15.8 psf 14.6 psf SISTING SYSTEI NSE COEFFICIE NSE COEFFICIE NSE COEFFICIE NSE COEFFICIE SISTING SYSTEI FICIENT (Cs) COEFFICIENT R SEISMIC DES COUNTY E LLS) ALLS)	SURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf SSURE 100 SF -13.6 psf -15.1 psf 12.4 psf SHORT PERION 1) SECOND F ENT AT SHOR ENT AT SHOR ENT AT (1) SE M HGN	100 SF -12.1 psi -17.0 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi -12.1 psi CODS (Ss) PERIODS (S COND PER COND PER	1) 5 (Sds) IODS (Sd1)	EQU	METHOD 1 (SIMPL STRUCTURE DETAILED FOR S JIVALENT LATERA 40 PSF/FT OF 60 PSF/FT OF	II 3.0 FT 6.0 FT IFIED PROCEDURE) IFIED PROCEDURE) II 11 11 11 11 11 11 11 11 11
EDGE STRIP (a) END ZONE (2a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 4&5 EARTHQUAKE DESIGN DATA: OCCUPANCY CATEGORY SEISMIC IMPORTANCE FAC MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL MAPPED SPECTRAL RESPO DESIGN SPECTRAL RESPO DESIGN SPECTRAL RESPO SEISMIC DESIGN CATEGOF MASE SHEAR SEISMIC DESIGN CATEGOF MASIC SEISMIC-FORCE-RES MDESIGN BASE SHEAR SEISMIC RESPONSE COEFI MALLYSIS PROCEDURE FO SUBGN DASE SHEAR SOIL DESIGN VALUES: SOIL DES	SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf -27.2 psf -45.7 psf SURFACE PRES 10.0 psf -27.2 psf -45.7 psf 10.5 psf 14.6 psf SURFACE PRES 14.6 psf SISTING SYSTEI NSE COEFFICIE NSE COEFFICIE RY SISTING SYSTEI FICIENT (Cs) COEFFICIENT R SEISMIC DES COUNTY E LLS) ALLS) FRICTION	SURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf SURE 100 SF -13.6 psf -15.1 psf 12.4 psf SHORT PERIO 1) SECOND F ENT AT SHOR NT AT (1) SE M HGN	100 SF -12.1 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi -30.9 psi -12.1 psi 10.9 psf DDS (Ss) PERIODS (S COND PER	1) 5 (Sds) IODS (Sd1)	EQU	METHOD 1 (SIMPL STRUCTURE DETAILED FOR S JIVALENT LATERA 40 PSF/FT OF 60 PSF/FT OF	II 3.0 FT 6.0 FT IFIED PROCEDURE) IFIED PROCEDURE) II 11 11 11 11 11 11 11 11 11
EDGE STRIP (a) END ZONE (2a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 3 WALL AREA NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4&5 EARTHQUAKE DESIGN DATA: OCCUPANCY CATEGORY SEISMIC IMPORTANCE FAC MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL MAPPED SPECTRAL RESPO DESIGN SPECTRAL RESPO DESIGN SPECTRAL RESPO DESIGN SPECTRAL RESPO DESIGN SPECTRAL RESPO DESIGN BASE SHEAR 	SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf -27.2 psf -45.7 psf SURFACE PRES 10.0 psf -27.2 psf -45.7 psf SURFACE PRES 10.5 psf -15.8 psf -19.5 psf 14.6 psf NSE COEFFICIE NSE COEFFICIE RY SISTING SYSTEI FICIENT (Cs) COEFFICIENT R SEISMIC DES COUNTY E LLS) FRICTION SPRESSURE (DATED XXXX PRE ND DESIGN V/	SSURE 50 SF -12.5 psf -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf SSURE 100 SF -13.6 psf -15.1 psf 12.4 psf SHORT PERIO 10 SECOND F ENT AT SHOR ENT AT SHOR M JIGN	100 SF -12.1 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi -30.9 psi -12.1 psi 10.9 psf DDS (Ss) PERIODS (S COND PER COND PER	1) (Sds) IODS (Sd1) RIPTION OF SO	EQU	METHOD 1 (SIMPL STRUCTURE DETAILED FOR S JIVALENT LATERA 40 PSF/FT OF 60 PSF/FT OF 60 PSF/FT OF 1,5 TIONS,	II 3.0 FT 6.0 FT IFIED PROCEDURE) IFIED PROCEDURE) II 11 11 11 11 11 11 11 11 11
EDGE STRIP (a) END ZONE (2a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 3 WALL AREA NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 4 SEISMIC IMPORTANCE FAC MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL 	DING SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf -27.2 psf -45.7 psf 10 SF -15.8 psf -19.5 psf 14.6 psf SURFACE PRES 10 SF -27.2 psf -15.8 psf -19.5 psf 14.6 psf SISTING SYSTEING SYST	SURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf SSURE 100 SF -13.6 psf -15.1 psf 12.4 psf SHORT PERIO 1) SECOND F ENT AT SHOR ENT AT SHOR ENT AT (1) SE M JIGN PARED BY XXX ALUES DE	100 SF -12.1 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi -30.9 psi -12.1 psi -12.1 psi 10.9 psf DDS (Ss) PERIODS (S COND PER COND PER	1) (Sds) IODS (Sd1) RIPTION OF SOL LIMITS LIVE	EQU	METHOD 1 (SIMPL STRUCTURE DETAILED FOR S JIVALENT LATERA 40 PSF/FT OF 60 PSF/FT OF 60 PSF/FT OF 1,5 TIONS,	II 3.0 FT 6.0 FT IFIED PROCEDURE) IFIED PROCEDURE) II 1 1 1 1 1 1 0.107 0.044 D 0.114 0.007 0.044 D 0.114 0.70 B NOT SPECIFICALLY SEISMIC RESTANCE 0.038W KIPS 0.038 3 L FORCE ANALYSIS 10 PCF (ASSUMED) 0.30 (ASSUMED) 150 PCI (ASSUMED) 150 PCI (ASSUMED) 150 PCI (ASSUMED) 0.30 (ASSUMED) 150 PCI (ASSUMED) 0.00 PSF (ASSUMED) 0.00 PSF (ASSUMED) 0.00 PSF (ASSUMED) 150 PCI (ASSUM
EDGE STRIP (a) END ZONE (2a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD ROOF AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 3 EARTHQUAKE DESIGN DATA: MEGATIVE ZONE 4 NEGATIVE COMMONS	DING SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf -27.2 psf -45.7 psf SURFACE PRES 10.0 psf -27.2 psf -45.7 psf SURFACE PRES 10 SF -45.7 psf SURFACE PRES 10 SF -19.5 psf 14.6 psf NSE COEFFICIE NSE COEFFICIE NSE COEFFICIE NSE COEFFICIE SISTING SYSTE FICIENT (Cs) COEFFICIENT R SEISMIC DES E COUNTY E LLS) ALLS) FRICTION G PRESSURE (DATED XXXX PRE (S, AND DESIGN V/ EMBERS F MEMBERS FNEMBERS	SURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf SSURE 100 SF -13.6 psf -15.1 psf 12.4 psf SHORT PERIO 1) SECOND F ENT AT SHOR ENT AT SHOR ENT AT (1) SE M HIGN PARED BY XXX DE CEILINGS	100 SF -12.1 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi -30.9 psi 10.9 psf 0DS (Ss) PERIODS (S COND PER COND PER COND PER COND PER	1) (Sds) IODS (Sd1) RIPTION OF SO LIMITS LIVE		METHOD 1 (SIMPL STRUCTURE DETAILED FOR S JIVALENT LATERA 40 PSF/FT OF 60 PSF/FT OF 60 PSF/FT OF 3 TIONS, 1/360	II 3.0 FT 6.0 FT IFIED PROCEDURE) IFIED PROCEDURE) II 10 PROCEDURE) II 10 NOT SPECIFICALLY SEISMIC RESTANCE 0.038W KIPS 0.034 D 0.114 0.070 B NOT SPECIFICALLY SEISMIC RESTANCE 0.038W KIPS 0.038 3 L FORCE ANALYSIS I10 PCF (ASSUMED) 0.30 (ASSUMED) 10 PCF (ASSUMED) 0.30 (ASSUMED) 150 PCI (ASSUMED) 150 PCI (ASSUMED) 00 PSF (ASSUMED) 00 PSF (ASSUMED) 150 PCI (ASSUMED) 00 PSF (ASSUMED) 150 PCI (ASSUMED
EDGE STRIP (a) DESIGN PROCEDURE WIND LOADS COMPONENTS & CLAD ROOF AREA NEGATIVE ZONE 1 NEGATIVE ZONE 1 NEGATIVE ZONE 2 NEGATIVE ZONE 3 POSITIVE ALL ZONES OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 1&2 OVERHANG ZONE 3 WALL AREA NEGATIVE ZONE 4 NEGATIVE ZONE 4 NEGATIVE ZONE 5 POSITIVE ZONE 4&5 EARTHQUAKE DESIGN DATA: OCCUPANCY CATEGORY SEISMIC IMPORTANCE FAC MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL MAPPED SPECTRAL ACCEL SITE CLASSIFICATIONS DESIGN SPECTRAL RESPO DESIGN SPECTRAL RESPO DESIGN SPECTRAL RESPO DESIGN SPECTRAL RESPO DESIGN BASE SHEAR SEISMIC DESIGN CATEGOF 	DING SURFACE PRES 10 SF -13.3 psf -23.2 psf -34.3 psf -27.2 psf -45.7 psf SURFACE PRES 10.0 psf -27.2 psf -45.7 psf SURFACE PRES 10 SF -19.5 psf 14.6 psf NSE COEFFICIE NSE COEFFICIE NSE COEFFICIE NSE COEFFICIE NSE COEFFICIE NSE COEFFICIE SISTING SYSTE FICIENT (Cs) COEFFICIENT R SEISMIC DES E COUNTY E LLS) ALLS) FRICTION G PRESSURE (DATED XXXX PRE SUM BOARD (G) FUEMBERS FSUM BOARD (G) FUEXIBLE CEIL	SURE 50 SF -12.5 psf -18.9 psf -29.1 psf 10.0 psf -27.2 psf -35.3 psf 5SURE 100 SF -13.6 psf -15.1 psf 12.4 psf SHORT PERIC 1) SECOND F ENT AT SHOR ENT AT SHOR ENT AT SHOR ENT AT (1) SE M GIGN CEILLINGS INGS	100 SF -12.1 psi -26.9 psi 10.0 psf -27.2 psi -30.9 psi -12.1 psi -12.1 psi 10.9 psf DDS (Ss) PERIODS (S COND PER COND PER COND PER	1) (Sds) IODS (Sd1) RIPTION OF SO LIMITS LIVE L/360 L/360		METHOD 1 (SIMPL STRUCTURE DETAILED FOR S JIVALENT LATERA 40 PSF/FT OF 60 PSF/FT OF 60 PSF/FT OF 3 TIONS, 1,5 SNOW or WIND L/360 L/360	II 3.0 FT 6.0 FT IFIED PROCEDURE) IFIED PROCEDURE) II 10 PROCEDURE) II 10 0.107 0.044 D 0.114 0.107 0.044 D 0.114 0.70 B NOT SPECIFICALLY SEISMIC RESTANCE 0.038W KIPS 0.038 3 L FORCE ANALYSIS I10 PCF (ASSUMED) 0.30 (ASSUMED) 0.30 (ASSUMED) 0.30 (ASSUMED) 150 PCI (ASSUMED) 0.30 (ASSUMED) 150 PCI (ASSUMED) 0.30 (ASSUMED) 150 PCI (ASSUMED) 0.30 (ASSUMED) 150 PCI (ASSUMED

MATERIAL STRENGTHS								
CAST-IN-PLACE CONCRETE								
FOOTINGS								
MINIMUM COMPRESSIVE STRENGTH AT 28 DAYS	fc = 3.000 PSI							
MAXIMUM WATER-CEMENTITIOUS RATIO	0.59							
	1 1/2"							
SLUMP LIMIT	5" +/-1"							
AIR CONTENT	NO							
FOUNDATION FROST WALLS								
MINIMUM COMPRESSIVE STRENGTH AT 28 DAYS	fc = 4,000 PSI							
MAXIMUM WATER-CEMENTITIOUS RATIO	0.48							
MAXIMUM AGGREGATE SIZE	3/4"							
SLUMP LIMIT	4" +/-1"							
AIR CONTENT	YES 4% to 6%							
EXTERIOR PIERS, WALLS, AND COLUMNS								
MINIMUM COMPRESSIVE STRENGTH AT 28 DAYS	fc = 4.000 PSI							
MAXIMUM WATER-CEMENTITIOUS RATIO	0.48							
MAXIMUM AGGREGATE SIZE	3/4"							
SLUMP LIMIT	4" +/-1"							
AIR CONTENT	YES 4% to 6%							
INTERIOR SLABS ON GRADE								
MINIMUM COMPRESSIVE STRENGTH AT 28 DAYS	fc = 4,000 PSI							
MAXIMUM WATER-CEMENTITIOUS RATIO	0.48							
MAXIMUM AGGREGATE SIZE	3/4"							
SLUMP LIMIT	4" +/-1"							
AIR CONTENT	NO							
EXTERIOR SLABS ON GRADE								
MINIMUM COMPRESSIVE STRENGTH AT 28 DAYS	fc = 4,000 PSI							
MAXIMUM WATER-CEMENTITIOUS RATIO	0.48							
MAXIMUM AGGREGATE SIZE	3/4"							
SLUMP LIMIT	4" +/-1"							
AIR CONTENT	YES 4% to 6%							
SONOTUBES								
MINIMUM COMPRESSIVE STRENGTH AT 28 DAYS	fc = 4,000 PSI							
MAXIMUM WATER-CEMENTITIOUS RATIO	0.50							
MAXIMUM AGGREGATE SIZE	3/4"							
SLUMP LIMIT	4" +/-1"							
AIR CONTENT	NO							
SLURRY								
MINIMUM COMPRESSIVE STRENGTH AT 28 DAYS	fc = 1,000 PSI							
MAXIMUM WATER-CEMENTITIOUS RATIO	0.55							
MAXIMUM AGGREGATE SIZE	1 1/2"							
SLUMP LIMIT	6" +/-1"							
AIR CONTENT	NO							

FIBER REINFORCEMENT: MACROSYNTHETIC FIBERS ENGINEERED & DESIGNED FOR USE IN CONCRETE SLABS COMPLYING WITH ASTM C 1116, TYPE III, 1 1/2" TO 2 1/2" LONG

STEEL/METAL: REINFORCING STEEL

REINFORGING STEEL:	
ALL ASTM A615, GRADE 60, DEFORMED	Fy = 60,000 PSI
STEEL WELDED WIRE REINFORCEMENT, FLAT SHEETS	Fy = 60,000 PSI
STRUCTURAL STEEL:	
ROLLED WIDE FLANGE SHAPES, ASTM A992 GRADE 50	Fy = 50,000 PSI
CHANNELS, ANGLES, AND S SHAPES, ASTM A36	Fy = 36,000 PSI
PLATE AND BAR, ASTM A36	Fy = 36,000 PSI
TUBE SHAPES, ASTM A500 GRADE B	Fy = 46,000 PSI
PIPE ASTM A53, TYPE E or S, GRADE B	Fy = 46,000 PSI
ALL OTHER ROLLED SHAPES, ASTM A36	Fy = 36,000 PSI
STRUCTURAL BOLTS:	
HIGH STRENGTH BOLTS, NUTS, & WASHERS	ASTM A325
ZINC-COATED HIGH STRENGTH BOLTS, NUTS, & WASHERS	ASTM A325
STAINLESS STEEL BOLTS, NUTS, & WASHERS	ASTM F593
SHEAR CONNECTORS (GRADES 1015 THRU 1020)	ASTM A108
THREADED RODS	ASTM A36
CLEVIS & TURNBUCKLES (GRADE 1035)	ASTM A108
EYE BOLTS & NUTS (GRADE 1030)	ASTM A108
ANCHOR BOLTS (GRADE 36)	ASTM F1554

E70XX

E80XX FOR

WELDING REINF

WELDED CONNECTIONS:WELDING ELECTRODES

WOOD FRAMING (UNO ON PLANS/DETAILS)

DIMENSIONAL LUMBER:	
JOISTS/BEAMS/HEADERS	SPRUCE-PINE-FIR No. 2 or BETTER
EXTERIOR LUMBER	TREATED SOUTHERN PINE No 2 or BETTER
POSTS/COLUMNS	SPRUCE-PINE-FIR No. 2 or BETTER
LAMINATED VENEER LUMBER (LVL):	
JOISTS/BEAMS/HEADERS	
E = 2,000 ksi	Fc (PARALLEL) = 2,510 psi
Fb = 2,600 psi	Fc (PERPENDICULAR) = 750 psi
Fv = 285 psi	
PARALLEL STRAND LUMBER (PSL):	
JOISTS/BEAMS/HEADERS	
E = 2,000 ksi	Fc (PARALLEL) = 2,900 psi
Fb = 2,900 psi	Fc (PERPENDICULAR) = 625 psi
Fv = 290 psi	
LAMINATED STRAND LUMBER (LSL):	
JOISTS/BEAMS/HEADERS	
E = 1,550 ksi	Fc (PARALLEL) = 2,170 psi
Fb = 2,325 psi	Fc (PERPENDICULAR) = 900 psi
Fv = 310 psi	

				(Mil	1
				PLANT:	MILWAUKEE	G
				DATE:	01/09/18	Н
				_	architecture + interior design JAKnetter Architects	6 W2321. wv.jaknett
					INITIAL	
				DR.		
				CH.		
				APPR.		
DESCRIPTION	REV	BY	DATE	SCALE		

SUPPORTING RIGID MATERIALS (BRICK, MASONRY, ETC.)

SUPPORTING FLEXIBLE MATERIALS

LINTEL/HEADER/BEAM MEMBERS SUPPORTING RIGID MATERIALS (BRICK, MASONRY, ETC.)

SUPPORTING FLEXIBLE MATERIALS

EXTERIOR WALLS WITH RIGID FINISHES (BRICK, MASONRY, ETC.)

WITH FLEXIBLE FINISHES (EIFS, SIDING, ETC.)

L/600

L/360

I /600

L/360

N/A

N/A

1/600

L/360

L/600

N/A L/360 N/A

L/600

L/240

L/600

L/240

N/A

