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Projected Change in Annual Average Precipitation (inches)
from 1980 to 2055 (A1B)
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We’'ve been measuring rainfall in Wisconsin since 1870
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Examining the
historic record

Annual rainfall over
southern Wisconsin
has increased since
1950 by 2" 6”

Annual PRCP Trend 1950-2006
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Largest Daily Rainfall

Madison, WI
Decadal Trends? 5
The record of heavy rainfall T e TS I N B s Pt
. ) ] Rainfall SR T
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Mississippi River at Clinton

The flow of the Mississippi River
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Potter, et al.

Annual Total Precipitation
Green Bay 1897-2008
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Potter, et al.

Annual Daily Maximum Precipitation
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However, these data
may not show any
long term trend.

Mann-Kendall Trend Test for Statistical Significance
Total Annual Precipitation Full Record

Change/Decade (In)

Statistically Signiﬁcant (95%)

Madison 0.225 No
Minneapolis, MN 0.188 Mo
Green Bay 0.066 Mo
Milwaukee 1.349 Yes

Mann-Kendall Trend Test for Statistical Significance
Annual Daily Maximum Preciptation Full Record

Change/Decade (In)

Statistically Significant {95%)

Madison 0.028 MNo
Minneapolis, MN 0.023 MNo
Green Bay -0.002 No
Milwaukee 0.075 Yes

Potter, et al.
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Results of the Analysis of Historical Data

“The analyses of both yearly and intense event variations in the historic
precipitation record indicate long-term variation in the magnitude and
frequency of large daily rainfalls in Wisconsin....

However, there is no evidence to support changes due to global
climate change.” - wicCcCl Stormwater Working Group




Future Climate Change
What Global Circulation Models (GCMs) tell us
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Steve Vavrus, CCR



Training models downscaled
to Wisconsin

using historic data
(“de-biasing”)

Mean Wisconsin temperature and
precipitation for

15 GCMs for 1980-1999

Black line = Observed temperature
and precipitation
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WI Temperature Change (F)

Change in Wisconsin
monthly temperature and <.
precipitation as predicted |
for 2090 by fifteen
downscaled GCMs.

Black line = Average of all /

models.

Temperature Change

January in the 20’s

Wetter Spring

Precipitation Change (in.)

Drier Summer
(note uncertainty)
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month David Lorenz, CCR



For Madison, monthly precipitation is predicted to change by
-3% (August) to +20% (January)
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Month

December

1961-2000] 2046-2065 | % Change
January 1.02 123 20.6%
February 1.05 1.20 14.3%
March 1.66 1.68 13.3%
April 2.71 293 8.1%
May 278 2.88 3.6%
June 3.38 3.38 0.0%
July 325 3.21 -1.2%
August 332 322 -3.0%
September 2.91 2.90 -0.3%
October 1.99 2.19 101%
November 1.82 1.91 4.9%
December 128 1.47 14 8%
TOTAL 27 17 28.40 4.5%

Potter, et al.




The % falling as rain during winter is predicted to double

Madison Percent Precipitation as Rain
December to March
1961-2000, 2046-2065 and 2081-2100
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Change in Frequency (%)

Intense Precipitation

Increasing in frequency — Moderate increase Iin intensity

Change in Heavy Precipitation Days
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Heaviest rainfall events are not predicted to increase

substantially in number or intensity

100-Year, 24-Hour Quantlle (Inches)
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High Water Impacts

ter Gorman
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Flooding

Stream, River, Lake
Heavy rainfall over days, preceded by
significant rainfall and/or snowmelt

Local, Urban
Heavy rainfall over minutes to hours

Groundwater
Heavy snow pack and/or persistent
heavy rainfall over months or years




Upland Runoff

Influenced by springtime conditions
Heavy snow pack = water storage

Frost and high soil moisture = retard infiltration

Steep slopes and poor ground cover = encourage runoff

Combined with heavy rainfall......




Urban Runoff

Influenced by the built environment
Impervious surfaces = no infiltration

Conveyances = concentrate flows

Combined with heavy rainfall......




Groundwater Flooding

Infiltration exceeds transpiration and drainage

Light frost = improves infiltration
Heavy snow pack = increased moisture available
Early rains = minimal transpiration

Persistent wet weather = exceeds drainage

Over months to years......
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2,500 wells tested; 28% contaminated
161 POTWs diverted 90 million gallons raw sewage
38 river gauges broke records
810 square miles of land flooded

@M In damage claims@ Source: FEMA, WEM




What Do We Think We Can Expect?

Total precipitation and intense precipitation events are projected to increase significantly
during the winter and spring months from December to April.

-This has the potential to cause more high water events, especially if the precipitation
occurs when the ground is frozen or saturated.

Precipitation occurring as rain during the winter months of December to March is also
projected to significantly increase.

- This has the potential to create stormwater management issues and increases the risk
of producing high water events during a season where such events currently do not
occur in Wisconsin.

Increased precipitation during periods of low evapotranspiration can lead to increased
groundwater recharge.

- This has the potential to cause groundwater flooding in agricultural areas and prior-
converted wetlands.

Modest increases in the magnitude of intense precipitation events are expected during the
21st century. For example, the 100-year storm event is projected to increase by about 10%
by mid-century.



Unsuccessful Adaptation Strateqies

Dredging lakes
and streams

Bigger storm drains

More levees



Successful Adaptation Strateqgies

Vulnerability analysis (i.e. risk & consequence):

Neighborhoods, roadways, impoundments, BMPs, wellheads,
agriculture

Design evolution:

Surface conveyances, overflow capacity/hardening, distributed
detention, POTW infiltration prevention

Cost evaluation:

Impact cost vs. risk of failure, link design standards and cost to
performance expectations

Education and Research:

Training present and future mangers, developing tools for analysis and
design, understand the implications of land use



Vulnerability Analysis

Build upon the experiences of communities that have experienced
recent extreme rainfalls to guide a state-wide evaluation of
vulnerabilities to climate change impacts, and develop implementation
plans to mitigate the identified vulnerabilities.

Consider:
— Floodplains and surface flooding;
— Areas of hydric soils and groundwater flooding;
— Vulnerable infrastructure;
— Stormwater BMPs;
— Sanitary sewer inflow and infiltration;
— Emergency response capacity.




Design Evolution

Much of our
Infrastructure is
designed with
stormwater in mind:__
Roads ?& S
Bridges e ‘
Dams =———p
Airports
Buildings
Sewers
Detention Ponds

Failure can be costly!



How much rain do we design for?

A statistical method Is used to estimate how often

to expect a rainfall of specific intensity and duration.

Table 9. Sectional Mean Frequency Distributions for Storm Periods of 5 Minutes to 10 Days

and Recurrence Intervals of 2 Months to 100 Years in Wisconsin

Sectional code (see figure 1 on page 4)

01 — Northwest

02 - North Central

03 — Northeast

04 - West Central

05 —Central

06 - East Central

07 - Southwest
08 - South Central

09 - Southeast

Rainfall (inches) for given recurrence interval

RAINFALL INTENSITY-DURATION-
FREQUENCY CURVES

NORTH

DURATION OF STORM IN MINUTES

10 15 20 30 40 5060 120 180

RAINFALL INTENSITY IN/HR

BASED ON: RAINFALL FREQUENCY DATA, NOAA ATLAS 14 VOLUME 2, 2005
MEWARK, NEW JERSEY

® 1-¥BAR AND 15-YEAR STORMS ARE INTERPOLATED)

10 15 20 30 40 5060 120 180
DURATION OF STORM IN MINUTES

Section Duration 2-month 3-month 4-month 6-month 9-month 1-vear 2-vear 5-vear 10-vear 25vear 50-year 100-vear
08 10-day 1.82 219 252 297 3.4 3.71 472 5.93 6.86 8.21 933 1060
08 5-day 1.52 1.82 2.06 2.39 275 2.99 3.78 4.86 573 7.03 8.14 9.36
08 72-hr 1.40 1.65 1.86 2.16 2.48 2.70 3.38 434 5.16 6.34 7.34 8.47
08 48-hr 1.30 1.53 1.70 1.97 2.26 2.46 3.07 3.96 4.68 5.79 6.75 7.82
08 24-hr 1.24 1.44 157 1.82 2.07 2.25 2.78 353 4.20 5.18 6.06 7.06
08 T8-hr 117 136 148 1.72 195 212 261 332 395 48/ 5/0 664
08 12-hr 1.08 1.25 1.37 1.59 1.80 1.96 242 3.07 365 451 527 6.14
08 6-hr 093 1.08 1.18 1.37 1.55 1.69 209 265 G 5 3.88 455 530
08 3-hr 0.79 0.92 1.01 1.17 1.32 1.44 1.78 2.26 2.69 3.32 3.88 452
08 2-hr 0.71 0.83 0.91 1.05 1.20 1.30 1.61 2.05 2.44 3.00 3.51 4.09
08 1-hr 0.58 0.68 0.74 0.86 0.98 1.06 1.31 1.66 1.97 2.43 2.85 332
08 30-min 0.46 053 058 0.67 0.76 0.83 1.03 1.31 1.55 1.92 224 261
08 15-min 0.34 0.39 0.43 0.49 0.56 0.61 0.75 0.95 1.13 1.40 1.64 1.91
08 10-min 0.26 0.30 0.33 0.38 0.43 0.47 0.58 0.74 0.88 1.09 1.27 1.48
08 5-min 0.15 017 0.19 0.22 0.25 0.27 0.33 0.42 0.50 0.62 0.73 0.85

For the Madison
area we expect
7" of rain during
24 hours at least
once in 100
years.



Design is based on experience (i.e. history)

U.S. DEPARTMENT OF COMMERCE WEATHER BUREAU
Lurner H. Hopnges, Secretary F.W. REICHELDERFER, Chief

For TP-40, data TECHNICAL PAPER NO. 40

from 200 primary RAINFALL FREQUENCY ATLAS OF THE UNITED STATES

and 51000 for Durations from 30 Minutes to 24 Hours and

Secondary Return Periods from 1 to 100 Years

weather stations PR, s D

were used for an e s

analysis of rainfall
events during
1938 — 1958.

(MAY 1961)



Rainfall
(inches)

Should we be designing for a changing climate?

3

2

0

1860

may actually reflect a dry period.

Largest Daily Rainfall

Madison, WI

1880

1920 1940 1960

Year

Discharge
(cfs)

810*

6 10*

410*

Records suggest that the TP-40 analysis

Mississippi River at Clinton
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Design standards using more representative events

NOAA Atlas 14 vs. TP-40
(100-Year Recurrence Interval)

1-hour 6-hour 12-hour 24-hour

(%) (%) (%) (%)
n=43 (-7.7; 15.4) | (-2.2;45.8) | (-5.4;37.8)  (-7.9;46.2)
Indiana 7.0 11.7 6.5 0.4
n=24 (-5.5; 15.4) | (-1.2; 23.3) | (-7.2; 21.2) | (-2.2; 28.2)
Kentucky 2.9 5.5 3.5 9.4
n=15 (-1.7;8.7) | (-4.0;13.2)  (-6.8;8.1) @ (-2.2;20.9)
Ohio 3.5 9.8 5.4 11.3
n=32 (-3.3;9.4) (0.2;22.1) | (-4.8;18.2) (-1.8;26.0)

Todd, C. E., J. M. Harbor, and B. Tynor, Increasing magnitudes and frequencies
of extreme precipitation events used for hydraulic analysis in the Midwest, 2006,

Journal of Soil and Water Conservation, 61, 179- 184.



In Short....

Climate predictions indicate an increase in amount and intensity
of precipitation, especially in late winter and spring.

Recent precipitation events may be a trend that is consistent
with these predictions.

Our runoff management decisions are often based on design
models derived from drier conditions.

We should reevaluate our design criteria to accommodate
Increased heavy rainfall, and groundwater flooding.



Cost Evaluation

Adaptation horizons can be far off:
- Sanitary sewer system planning ~ 30 yr

Unless there is an immediate benefit (i.e. present
vulnerability), the discount rate on large projects may
offset savings from anticipating impacts in the design.

Ongoing research on this topic....



Education and Research

Periodically reevaluate and revise climate and hydrologic
design models and criteria.

Develop tools and build professional capacity to distinguish
the hydrologic effects of local and regional human
activities from climate change.

Evaluate and improve strategies for managing high water.

Establish curriculum to build professional capacity for the
coming generation of managers.



Improved Information iIs Needed

Fine scale rainfall data

Real time stream-flow data

Detailed understanding of sub-watershed characteristics
Updated estimates of flood profiles

Robust groundwater monitoring

Models to predict groundwater impacts

Locate flood-prone/at-risk areas, wells, septic systems, hazardous
materials, petroleum storage

|dentify at-risk road-crossings

Impact of events on wastewater treatment capacity



What does all this mean for
water resource management?

Should we invest $M’s in adapting infrastructure to
Increases of intense storms predicted by GCMs?

— Probably not yet.

Should we be certain that our systems can cope with
events of the magnitude recently seen?

— That would be wise.

We need.: Better data
Enhanced monitoring and prediction systems
Updated engineering design standards
Well trained and aware professionals



Questions? ...wade right in
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