2675 Pratum Avenue | Hoffman Estates, IL 60192
PH: (224) 293-6333 | www.wtengineering.com

SITE NO: ML42100A
SITE NAME: SCHRAGER
SITE ADDRESS: 2915 N SHERMAN BOULEVARD MILWAUKEE, WI 53210

W-T GROUP JOB NO: $1911530 T$

STRUCTURAL ANALYSIS

DATE: 07/09/2020

The calculations included herein, as listed above, were prepared by me, or under my direct supervision, and to the best of my knowledge; comply with the requirements of all applicable codes and ordinances.

Jeff Gutowsky, P.E.
Wisconsin P.E. License No. 35009-006
Expires: 07-31-2020

INDEX OF CALCULATIONS

SUMMARY LETTER 3
STRUCTURAL CALCULATIONS 5
OVERVIEW 6
APPLICABLE CODES AND LOAD COMBINATIONS 6
MATERIAL SPECIFICATIONS 7
ANTENNA WIND LOADING. 8
MOUNT FRAME ANALYSIS (RISA 3-D) 17
3-D VIEW 17
NODE NUMBERS 18
MEMBER LABELS 19
MEMBER SHAPES 20
DEAD LOAD 21
DEAD LOAD (ICE) 22
WIND LOAD X-DIRECTION 23
WIND LOAD Z-DIRECTION 24
WIND LOAD X-DIRECTION (ICE) 25
WIND LOAD Z-DIRECTION (ICE) 26
MEMBER STRESS RATIO 27
CALCULATION REPORT 28
CONNECTION CHECK 37
EXHIBITS 40
APPURTENANCE INFORMATION 41
CONSTRUCTION DWGS BY "W-T COMMUNICATIONS PRACTICE AREA" DATED 06/09/2020 42
PREVIOUS CONSTRUCTION DRAWINGS PREPARED BY "EDGE CONSULTING ENGINEERS, INC." DATED 12/12/2012 57
PREVIOUS STRUCTURAL ANALYSIS PREPARED BY "EDGE CONSULTING ENGINEERS, INC." DATED 06/12/2012 68

July 08, 2020
The W-T Group, LLC
Communications Division
2675 Pratum Avenue
Hoffman Estates, IL 60192

Attn: Sergio Contreras

Re: Subject: Structural Mount Analysis Letter
 Site No: ML42100A
 Site Name: Schrager
 Address: 2915 N. Sherman Boulevard, Milwaukee, WI 53210
 W-T Group Job No: 1911530T

Dear Sergio:

The Conclusions and recommendations made in this letter are based on the following assumptions:

- The structure(s) have been built in accordance with applicable building codes and have been properly maintained.
- The existing mount members and connection hardware are free of deficiencies and are capable of supporting the original equipment loads.
- The T-Mobile structure was constructed in accordance with industry standards and expected construction workmanship and that the construction followed the intent of the original design. Throughout the life of the project, no structural member was modified intentionally or not.
- Our scope is limited to verify the antenna mounts for the proposed new antennas and RRUs. This letter does not accept or imply any liability for the original design of the antenna support structure design and installation. The liability remains with the original Structural Engineer of record and the installation contractor.
- It is understood that the new equipment will be installed after the existing respective equipment is removed.

Applicable Codes and References:

Wisconsin Building Code (2015 International Building Code)
ASCE 7-10 Minimum Design Loads for Buildings and Other Structures
ANSI-TIA-222-G Standard
AISC Steel Construction Manual Fifteenth Edition

Structure Summary:

"The W-T Group, LLC (WTG)" has performed a structural analysis of the existing antenna mount frame for the proposed new and existing antennas. The existing and proposed antennas and RRUs are included in the loading table below. New T-Mobile antenna/RRU additions shall be mounted as specified in the construction documents issued by "W-T Communications Division"
dated 06/09/2020. The mount information was obtained from the previous construction drawings prepared by "Edge Consulting Engineers, Inc." dated 06/12/2012.

Proposed/Existing Loading:

Description	Appurtenance	Qty.	Weight (lbs)	Elevation (AGL)
Proposed	AAHF Massive MIMO w/ Integrated RRU(s) $\left(25.63^{\prime \prime} \times 19.72^{\prime \prime} \times 10.32^{\prime \prime}\right)$	3	103.62	$\pm 54{ }^{\prime}-{ }^{\prime \prime}$
	Commscope FFHH-65C-R3 (95.9" x 25.2" x 9.3")	3	127.6	$\pm 51^{\prime}-0^{\prime \prime}$
	$\begin{gathered} \text { AHFIG } \\ \left(27.3^{\prime \prime} \times 12.1^{\prime \prime} \times 5.2^{\prime \prime}\right) \end{gathered}$	3	70.5	
	$\begin{gathered} \text { AHLOA } \\ \text { (22.05" } \left.\times 12.13^{\prime \prime} \times 7.44 "\right) \end{gathered}$	3	83.77	
Existing	$\begin{gathered} \text { COVP } \\ (20.38 " \times 16.08 " 5.83 ") \end{gathered}$	3	19.0	± 51 '-0'

* Coax - (3) Hybrid Cable

Overall Conclusion:

Based on our structural analysis performed by "The W-T Group, LLC", the existing antenna mounts are structurally adequate to support the proposed new and existing antenna and RRHs. General contractor to field verify the information called out on page 37 of this report prior to installation of the proposed antennas and equipment.

The engineering services are performed on the basis that the information used is current, complete and correct. The information may consist of, but not limited to information supplied by the client regarding the structure itself. It is the responsibility of the client to ensure that the information provided to "The W-T Group, LLC" is correct and complete. All services are performed, results obtained and recommendations made in accordance with the generally accepted engineering principles and practices.

We appreciate the opportunity to be of service on this project. Please do not hesitate to contact us with any questions or concerns.

Regards,

 The W-T Group, LLC

[^0]
STRUCTURAL CALCULATIONS

WT Group THE W-T GROUP, LLC 2675 PRATUM AVENUE HOFFMAN ESTATES, IL 60192 PHONE: (224) 293-6444	Project ML42100A: SCHRAGER				Job Ref. 1911530T	
	Section OVERVIEW				Sheet no./rev. 6	
	Calc. by CJS	$\begin{aligned} & \text { Date } \\ & 07 / 08 / 2020 \end{aligned}$	Chk'd by	Date	App'd by	Date

OVERVIEW

Applicable Codes and References:

Wisconsin Building Code (2015 International Building Code)
ASCE 7-10 Minimum Design Loads for Buildings and Other Structures
AISC Steel Construction Manual Fifteenth Edition
ANSI/TIA-222-G Standard
Drawings provided by W-T Communications Division, LLC dated 06/09/2020

Load Combinations (ANSI/TIA-222-G)

- 1.2 D + 1.0 $\mathrm{D}_{\mathrm{g}}+1.6 \mathrm{~W}$ 。- $0.9 \mathrm{D}+1.0 \mathrm{D}_{\mathrm{g}}+1.6 \mathrm{~W}$ 。
- $1.2 \mathrm{D}+1.0 \mathrm{D}_{\mathrm{g}}+1.0 \mathrm{D}_{\mathrm{i}}+1.0 \mathrm{~W}_{\mathrm{i}}+1.0 \mathrm{~T}_{\mathrm{i}}$
- $1.2 \mathrm{D}+1.0 \mathrm{D}+1.0 \mathrm{E}$
- $0.9 \mathrm{D}+1.0 \mathrm{D}_{\mathrm{g}}+1.0 \mathrm{E}$

Load Combinations (IBC 2015 LRFD):

- $1.4(\mathrm{D}+\mathrm{F})$
- $1.2(\mathrm{D}+\mathrm{F})+1.6(\mathrm{~L}+\mathrm{H})+0.5(\mathrm{Lr}$ or S or R$)$
- $1.2(\mathrm{D}+\mathrm{F})+1.6(\mathrm{Lr}$ or S or R$)+1.6 \mathrm{H}+\left(\mathrm{f}_{1} \mathrm{~L}\right.$ or 0.5 W$)$
- $1.2(D+F)+1.0 W+f_{1} L+1.6 H+0.5\left(L_{r}\right.$ or S or $\left.R\right)$
- $1.2(D+F)+1.0 E+f_{1} L+1.6 H+f_{2} S$
- $\quad 0.9 \mathrm{D}+1.0 \mathrm{~W}+1.6 \mathrm{H}$
- $\quad 0.9(D+F)+1.0 E+1.6 H$

Load Combinations (IBC 2015 ASD):

- $D+F$
- $D+H+F+L$
- $\mathrm{D}+\mathrm{H}+\mathrm{F}+\left(\mathrm{L}_{\mathrm{r}}\right.$ or S or R$)$
- $\mathrm{D}+\mathrm{H}+\mathrm{F}+0.75(\mathrm{~L})+0.75(\mathrm{Lr}$ or S or R$)$
- $\mathrm{D}+\mathrm{H}+\mathrm{F}+0.75(0.6 \mathrm{~W})+0.75 \mathrm{~L}+0.75(\mathrm{Lr}$ or S or R$)$
- $\quad \mathrm{D}+\mathrm{H}+\mathrm{F}+0.75(0.7 \mathrm{E})+0.75 \mathrm{~L}+0.75 \mathrm{~S}$
- $0.6 \mathrm{D}+0.6 \mathrm{~W}+\mathrm{H}$
- $\quad 0.6(\mathrm{D}+\mathrm{F})+0.7 \mathrm{E}+\mathrm{H}$
(Eq. 16-1)
(Eq. 16-2)
(Eq. 16-3)
(Eq. 16-4)
(Eq. 16-5)
(Eq. 16-6)
(Eq. 16-7)
(Eq. 16-8)
(Eq. 16-9)
(Eq. 16-10)
(Eq. 16-12)
(Eq. 16-13)
(Eq. 16-14)
(Eq. 16-15)
(Eq. 16-16)

Notations:

- $\quad \mathrm{D}=$ Dead load of structure and appurtances, excluding guy assemblies
- $\quad D_{g}=$ Dead load of guy assemblies
- $D_{i}=$ Weight of ice due to factored ice thickness
- $E=$ Combined effect of horizontal and vertical earthquake induced forces.
- $f_{1}=1$ for floors in places of public assembly in excess of 100 pounds per square foot, and $=0.5$ for other live loads.
- $f_{2}=0.7$ for roof configurations that do not shed snow off the structure, and $=0.2$ for other roof configurations.
- $F=$ Load due to fluids with well-defined pressures and maximum heights.
- $\mathrm{H}=$ Load due to lateral earth pressures, ground water pressure or pressure of bulk materials.
- $L=$ Floor live load.
- $L_{r}=$ Roof live load.
- $R=$ Rain load.
- $S=$ Snow load.
- $\mathrm{T}=$ Self-straining load.
- $\quad T_{i}=$ Load effects due to temperature
- $W=$ Load due to wind pressure.
- $\mathrm{W}_{0}=$ Wind load without ice

WT Group THE W-T GROUP, LLC 2675 PRATUM AVENUE HOFFMAN ESTATES, IL 60192 PHONE: (224) 293-6444	Project ML42100A: SCHRAGER				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ \text { 1911530T } \end{array}$	
	Section OVERVIEW				Sheet no./rev.$\text { \| } 7$	
	Calc. by CJS	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 08 / 2020 \end{array}$	Chk'd by	Date	App'd by	Date

Material Specifications:

Bolts:

- Shear Bolts ASTM A325 $\quad \mathrm{F}_{\mathrm{u}}=120 \mathrm{ksi}$

Structural Steel:

- Angles
- Channels
- Plates
- Pipes
- Wide Flange
- HSS Tubes
- HSS Pipes

ASTM A36
ASTM A36
ASTM A36
ASTM A53
ASTM A992
ASTM A500
ASTM A500
$\mathrm{F}_{\mathrm{y}}=36 \mathrm{ksi}$
$F_{y}=36 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{y}}=36 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{y}}=35 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{y}}=46 \mathrm{ksi}$
$F_{y}=42 \mathrm{ksi}$

WTVGroup	Project ML42100A: SCHRAGER				Job Ref. 1911530T	
THE W-T GROUP, LLC	Section ANTENNA WIND LOADING				Sheet no./rev. 8	
HOFFMAN ESTATES, IL 60192 PHONE: (224) 293-6444	Calc. by CJS	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 08 / 2020 \end{array}$	Chk'd by	Date	App'd by	Date

ANTENNA WIND LOADING (ASCE 7-10 \& ANSI/TIA-222-G)

In accordance with ANSI / TIA-222-G Standard and ASCE 7-10

Antenna and mounting pipe data

Width of mounting pipe

```
```

$\mathrm{W}_{\text {pipe }}=2.375 \mathrm{in}$

```
```

```
\(\mathrm{W}_{\text {pipe }}=2.375 \mathrm{in}\)
```

$\mathrm{z}_{\mathrm{g}}=900 \mathrm{ft}$
$\alpha=9.5$
$\mathrm{K}_{\mathrm{e}}=1.00$
$K_{z \text { min }}=\max \left(2.01 \times\left(\mathrm{z} / \mathrm{z}_{\mathrm{g}}\right)^{\wedge}(2 / \alpha), 0.85\right)=1.112$
$K_{z}=\min \left(K_{z \min }, 2.01\right)=1.112$
$\varepsilon=1.00$
$q_{\mathrm{h}}=0.00256 \times \mathrm{K}_{\mathrm{z}} \times \mathrm{K}_{\mathrm{zt}} \times \mathrm{K}_{\mathrm{d}} \times \mathrm{V}^{2} \times 1 \mathrm{psf} / \mathrm{mph}^{2}=\mathbf{3 1 . 9 9 0} \mathrm{psf}$

```
```

$H_{\text {pipe }}=8.0 \mathrm{ft}$

```
\(H_{\text {pipe }}=8.0 \mathrm{ft}\)
\(W_{\text {ANT }}=19.72\) in
\(W_{\text {ANT }}=19.72\) in
\(D_{\text {ANt }}=10.32\) in
\(D_{\text {ANt }}=10.32\) in
\(\mathrm{H}_{\text {ANt }}=25.63\) in
\(\mathrm{H}_{\text {ANt }}=25.63\) in
\(\mathrm{z}=54.0 \mathrm{ft}\)
\(\mathrm{z}=54.0 \mathrm{ft}\)
\(\mathrm{V}=115 \mathrm{mph}\)
\(\mathrm{V}=115 \mathrm{mph}\)
II
II
I = 1.0
I = 1.0
\(K_{d}=0.85\)
\(K_{d}=0.85\)
C
C
\(\mathrm{G}_{\mathrm{h}}=0.85\)
\(\mathrm{G}_{\mathrm{h}}=0.85\)
\(K_{z t}=\mathbf{1 . 0 0}\)
```

$K_{z t}=\mathbf{1 . 0 0}$

```
Height of mounting pipe
Width of AAHF
Depth of AAHF
Height of AAHF
Height of Antenna above grade
General wind load requirements
Basic wind speed

Risk category / Structure class
Importance factor (Table 2-3)
Wind direction probability factor (Table 2-2)
Exposure category (cl.26.7.3)
Gust effect factor (Sect. 2.6.7)
Topography
Topography factor not signifcant (Sect. 2.6.6.4)
Wind pressure
Nominal height of atmospheric boundary layer
3 -second gust wind speed power law exponent
Terrain constant
Minimum value for \(\mathrm{K}_{z}\)
Velocity pressure coefficient (Sect. 2.6.5.2)

Ratio of solid area to gross area
Velocity pressure

\section*{Wind force coefficient of mounting pipe}

Area of mounting pipe
\(\mathrm{A}_{\mathrm{f}, \text { pipe }}=\mathrm{W}_{\text {pipe }} \times \mathrm{H}_{\text {pipe }}=1.583 \mathrm{ft}^{2}\)
\(A_{\text {pipe }}=H_{\text {pipe }} / W_{\text {pipe }}=40.421\)
\(C=\left(I \times K_{z} \times K_{z t}\right)^{\wedge}(1 / 2) \times V \times W_{\text {pipe }}=35.196\)
\(C_{\text {a,pipe }}=i f\left(A R_{\text {pipe }}<25,0.8,1.2\right)=\mathbf{1 . 2 0 0}\)

\section*{Wind force coefficient of AAHF}

Area of AAHF (x-axis)
Area of AAHF (z-axis)
Aspect ratio of AAHF (x-axis)
Aspect ratio of AAHF (z-axis)
Force coefficient for flat members (x-axis)
Force coefficient for flat members (z-axis)
\(\mathrm{A}_{\mathrm{f}, \mathrm{ANTx}}=\mathrm{W}_{\mathrm{ANT}} \times \mathrm{H}_{\mathrm{ANT}}=3.510 \mathrm{ft}^{2}\)
\(A_{f, A N T z}=D_{\text {ANT }} \times H_{\text {ANT }}=1.837 \mathrm{ft}^{2}\)
ARANTX \(=\) Hant \(/ W_{\text {ANt }}=\mathbf{1 . 3 0 0}\)
ARantz \(=\) Hant \(_{\text {ant }} /\) Dant \(=\mathbf{2 . 4 8 4}\)
\(\mathrm{C}_{\mathrm{a}, \mathrm{ANTx}}=\mathrm{if}\left(\mathrm{AR}_{\text {ANTx }}<25,1.4,2.0\right)=\mathbf{1 . 4 0 0}\)
\(\mathrm{C}_{\mathrm{a}, \mathrm{ANTz}}=\mathrm{if}\left(\mathrm{AR}_{\text {ANTz }}<25,1.4,2.0\right)=1.400\)

\section*{Wind forces}

Wind force on mounting pipe
Distributed load on mounting pipe
\(F_{A, \text { pipe }}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \text { pipe }}\right) \times A_{\mathrm{f}, \text { pipe }}=\mathbf{5 1 . 6 6 4} \mathrm{lbs}\)
\(\mathrm{w}_{\text {pipe }}=\mathrm{F}_{\mathrm{A}, \text { pipe }} / \mathrm{H}_{\text {pipe }}=6.458 \mathrm{plf}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
WTVGroup \\
THE W-T GROUP, LLC \\
2675 PRATUM AVENUE HOFFMAN ESTATES, IL 60192 \\
PHONE: (224) 293-6444
\end{tabular}} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Project \\
ML42100A: SCHRAGER
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{array}{|l|}
\hline \text { Job Ref. } \\
\text { 1911530T }
\end{array}
\]} \\
\hline & \multicolumn{4}{|l|}{\begin{tabular}{l}
Section \\
ANTENNA WIND LOADING
\end{tabular}} & \multicolumn{2}{|l|}{Sheet no./rev. 9} \\
\hline & \begin{tabular}{l}
Calc. by \\
CJS
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { Date } \\
07 / 08 / 2020
\end{array}
\] & Chk'd by & Date & App'd by & Date \\
\hline
\end{tabular}

Wind force on AAHF (x-direction)
\(\mathrm{F}_{\mathrm{A}, \mathrm{ANT}, \mathrm{x}}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{ANTx}}\right) \times \mathrm{A}_{\mathrm{f}, \mathrm{ANTx}}=133.616 \mathrm{lbs}\)
Wind force on AAHF (z-direction)
\(\mathrm{F}_{\mathrm{A}, \mathrm{ANT}, \mathrm{z}}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{ANTz}}\right) \times \mathrm{A}_{\mathrm{f}, \text { ANTz }}=\mathbf{6 9 . 9 2 5 \mathrm { lbs }}\)

\section*{Dead load}

Weight of AAHF
\(L_{\text {ANT }}=\mathbf{1 0 3 . 6 2} \mathrm{lbs}\)

\section*{ANTENNA WIND LOADING (ASCE 7-10 \& ANSI/TIA-222-G)}

In accordance with ANSI / TIA-222-G Standard and ASCE 7-10

\section*{Antenna and mounting pipe data}

Width of mounting pipe
Height of mounting pipe
Width of AHFIG
Depth of AHFIG
Height of AHFIG
Width of FFHH
Depth of FFHH
Height of FFHH
Width of AHLOA
Depth of AHLOA
Height of AHLOA
Width of COVP
Depth of COVP
Height of COVP
Height of Antenna above grade

\section*{General wind load requirements}

Basic wind speed
Risk category / Structure class
Importance factor (Table 2-3)
Wind direction probability factor (Table 2-2)
Exposure category (cl.26.7.3)
Gust effect factor (Sect. 2.6.7)

\section*{Topography}

Topography factor not signifcant (Sect. 2.6.6.4)

\section*{Wind pressure}

Nominal height of atmospheric boundary layer
3 -second gust wind speed power law exponent
Terrain constant
Minimum value for \(\mathrm{K}_{\mathrm{z}}\)
Velocity pressure coefficient (Sect. 2.6.5.2)
Ratio of solid area to gross area
Velocity pressure

\section*{Wind force coefficient of mounting pipe}

Area of mounting pipe
\(\mathrm{W}_{\text {pipe }}=2.375\) in
\(\mathrm{H}_{\text {pipe }}=8.0 \mathrm{ft}\)
\(\mathrm{W}_{\text {ANT } 1}=12.1\) in
\(\mathrm{D}_{\text {ANT1 } 1}=5.2\) in
\(H_{\text {ANT1 }}=27.3\) in
\(\mathrm{W}_{\text {ANT2 }}=25.2\) in
\(D_{\text {ANT2 }}=9.3\) in
\(\mathrm{H}_{\text {ANT2 }}=95.9\) in
\(\mathrm{W}_{\text {ANT3 }}=12.13\) in
Dant3 \(=7.44\) in
\(\mathrm{H}_{\text {ANT3 }}=22.05\) in
\(W_{\text {ANTG }}=16.08\) in
\(D_{\text {Ant }}=5.83\) in
\(H_{\text {ANT6 }}=20.38\) in
\(\mathrm{z}=51.0 \mathrm{ft}\)
\(\mathrm{V}=115 \mathrm{mph}\)
II
\(I=1.0\)
\(K_{d}=0.85\)
C
\(\mathrm{G}_{\mathrm{h}}=0.85\)
\(\mathrm{K}_{\mathrm{zt}}=\mathbf{1 . 0 0}\)
\(\mathrm{z}_{\mathrm{g}}=900 \mathrm{ft}\)
\(\alpha=9.5\)
\(\mathrm{K}_{\mathrm{e}}=1.00\)
\(K_{z \text { min }}=\max \left(2.01 \times\left(z / z_{g}\right)^{\wedge}(2 / \alpha), 0.85\right)=1.098\)
\(K_{z}=\min \left(K_{z \min }, 2.01\right)=1.098\)
\(\varepsilon=1.00\)
\(\mathrm{q}_{\mathrm{h}}=0.00256 \times \mathrm{K}_{\mathrm{z}} \times \mathrm{K}_{\mathrm{zt}} \times \mathrm{K}_{\mathrm{d}} \times \mathrm{V}^{2} \times 1 \mathrm{psf} / \mathrm{mph}^{2}=\mathbf{3 1 . 6 0 8} \mathrm{psf}\)
\(A_{f, \text { pipe }}=W_{\text {pipe }} \times H_{\text {pipe }}=1.583 \mathrm{ft}^{2}\)

THE W-T GROUP, LLC 2675 PRATUM AVENUE hoffman estates, IL 60192
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{3}{|l|}{ Project } & \multicolumn{1}{l|}{\begin{tabular}{l} 
Job Ref. \\
ML42100A: SCHRAGER
\end{tabular}} & 1911530 T
\end{tabular}

Aspect ratio of mounting pipe
Velocity coefficient
Force coefficient for round members (Table 2-8)

\section*{Wind force coefficient of AHFIG}

Area of AHFIG (x-axis)
Area of AHFIG (z-axis)
Aspect ratio of AHFIG (x-axis)
Aspect ratio of AHFIG (z-axis)
Force coefficient for flat members (x-axis)
Force coefficient for flat members (z-axis)
Wind force coefficient of FFHH
Area of FFHH (x-axis)
Area of FFHH (z-axis)
Aspect ratio of FFHH (x-axis)
Aspect ratio of FFHH (z-axis)
Force coefficient for flat members (x-axis)
Force coefficient for flat members (z-axis)
Wind force coefficient of AHLOA
Area of AHLOA (x-axis)
Area of AHLOA (z-axis)
Aspect ratio of AHLOA (x-axis)
Aspect ratio of AHLOA (z-axis)
Force coefficient for flat members (x-axis)
Force coefficient for flat members (z-axis)
Wind force coefficient of COVP
Area of COVP (x-axis)
Area of COVP (z-axis)
Aspect ratio of COVP (x-axis)
Aspect ratio of COVP (z-axis)
Force coefficient for flat members (x-axis)
Force coefficient for flat members (z-axis)

\section*{Wind forces}

Wind force on mounting pipe
Distributed load on mounting pipe
Wind force on AHFIG (x-direction)
Wind force on AHFIG (z-direction)
Wind force on FFHH (x-direction)
Wind force on FFHH (z-direction)
Wind force on AHLOA (x-direction)
Wind force on AHLOA (z-direction)
Wind force on COVP (x-direction)
Wind force on COVP (z-direction)
\(A R_{\text {pipe }}=H_{\text {pipe }} / W_{\text {pipe }}=40.421\)
\(\mathrm{C}=\left(\mathrm{I} \times \mathrm{K}_{\mathrm{z}} \times \mathrm{K}_{\mathrm{zt}}\right)^{\wedge}(1 / 2) \times \mathrm{V} \times \mathrm{W}_{\text {pipe }}=34.985\)
\(C_{\text {a,pipe }}=i f\left(A_{\text {pipe }}<25,0.8,1.2\right)=\mathbf{1 . 2 0 0}\)
\(\mathrm{A}_{\mathrm{f}, \mathrm{ANT} 1 \mathrm{x}}=\mathrm{W}_{\text {ANT } 1} \times \mathrm{H}_{\mathrm{ANT} 1}=2.294 \mathrm{ft}^{2}\)
\(\mathrm{A}_{\mathrm{f}, \mathrm{ANT} 1 \mathrm{z}}=\mathrm{D}_{\text {ANT } 1} \times \mathrm{H}_{\text {ANT } 1}=0.986 \mathrm{ft}^{2}\)
ARANT1x \(=\) Hant \(1 / W_{\text {ANT } 1}=\mathbf{2 . 2 5 6}\)
AR \(_{\text {ANT1 }}=\) HaNT1 \(/ D_{\text {ANT1 }}=5.250\)
\(\mathrm{C}_{\mathrm{a}, \text { ANT1x }}=\mathrm{if}\left(\right.\) AR \(\left._{\text {ANT1x }}<25,1.4,2.0\right)=\mathbf{1 . 4 0 0}\)
\(\mathrm{C}_{\mathrm{a}, \text { ANT1z }}=\mathrm{if}(\) ARANT1z \(<25,1.4,2.0)=\mathbf{1 . 4 0 0}\)
\(\mathrm{A}_{\mathrm{f}, \text { ANT2x }}=\mathrm{W}_{\text {ANT2 }} \times \mathrm{H}_{\text {ANT2 }}=\mathbf{1 6 . 7 8 2} \mathrm{ft}^{2}\)
\(\mathrm{A}_{\mathrm{f}, \mathrm{ANT} 2 \mathrm{z}}=\) Dant2 \(\times \mathrm{H}_{\text {ANT2 }}=6.194 \mathrm{ft}^{2}\)
AR \(_{\text {ANT2x }}=\) Hant2 \(/ \mathrm{W}_{\text {ANT2 }}=3.806\)
\(A_{\text {ANT2z }}=\) Hant2 \(/ D_{\text {ANT2 }}=\mathbf{1 0 . 3 1 2}\)
\(\mathrm{C}_{\mathrm{a}, \text { ANT2x }}=\mathrm{if}\left(\mathrm{AR}_{\text {ANT2x }}<25,1.4,2.0\right)=\mathbf{1 . 4 0 0}\)
\(\mathrm{C}_{\mathrm{a}, \mathrm{ANT} 2 \mathrm{z}}=\mathrm{if}\left(\mathrm{AR}_{\text {ANT2z }}<25,1.4,2.0\right)=\mathbf{1 . 4 0 0}\)
\(\mathrm{A}_{\mathrm{f}, \mathrm{ANT} 3 \mathrm{x}}=\mathrm{W}_{\text {ANT3 }} \times \mathrm{H}_{\text {ANT3 }}=1.857 \mathrm{ft}^{2}\)
\(\mathrm{A}_{\mathrm{f}, \mathrm{ANT3z}}=\mathrm{D}_{\mathrm{ANT}} \times \mathrm{H}_{\mathrm{ANT} 3}=1.139 \mathrm{ft}^{2}\)
ARant3x \(=\) Hant3 \(/ \mathrm{W}_{\text {Ant3 }}=\mathbf{1 . 8 1 8}\)
AR \(_{\text {ANT3z }}=\) Hant3 \(/ D_{\text {ANT3 }}=2.964\)
\(\mathrm{C}_{\mathrm{a}, \text { ANT3x }}=\mathrm{if}\left(\mathrm{AR}_{\text {ANT3x }}<25,1.4,2.0\right)=\mathbf{1 . 4 0 0}\)
\(\mathrm{C}_{a, \text { ANT3z }}=\mathrm{if}\left(\mathrm{AR}_{\text {ANT3z }}<25,1.4,2.0\right)=\mathbf{1 . 4 0 0}\)
\(\mathrm{A}_{\mathrm{f}, \text { ANT6x }}=\mathrm{W}_{\text {ANT6 }} \times \mathrm{H}_{\text {ANT6 }}=2.276 \mathrm{ft}^{2}\)
\(\mathrm{A}_{\mathrm{f}, \text { ANTGz }}=\mathrm{D}_{\text {ANT6 }} \times \mathrm{H}_{\text {ANT6 }}=0.825 \mathrm{ft}^{2}\)
AR \(_{\text {ANT6 }}=\) Hante \(/ W_{\text {ANT6 }}=\mathbf{1 . 2 6 7}\)
ARantgz \(=\) Hanta \(/\) Dant6 \(=3.496\)
\(\mathrm{C}_{\mathrm{a}, \text { ANT6x }}=\mathrm{if}(\) ARant \(\mathrm{A} x<25,1.4,2.0)=\mathbf{1 . 4 0 0}\)
\(\mathrm{C}_{\mathrm{a}, \text { ANT6z }}=\mathrm{if}\left(\right.\) AR \(\left._{\text {ANTGz }}<25,1.4,2.0\right)=\mathbf{1 . 4 0 0}\)
\(F_{A, p \text { pipe }}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{pipe}}\right) \times \mathrm{Af}_{\mathrm{f}, \mathrm{pipe}}=\mathbf{5 1 . 0 4 6 \mathrm { lbs }}\)
\(\mathrm{W}_{\text {pipe }}=\mathrm{F}_{\text {A,pipe }} / \mathrm{H}_{\text {pipe }}=6.381 \mathrm{plf}\)
\(\mathrm{F}_{\mathrm{A}, \mathrm{ANT1}, \mathrm{x}}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{ANT} 1 \mathrm{x}}\right) \times \mathrm{A}_{\mathrm{f}, \text { ANT1x }}=\mathbf{8 6 . 2 8 3 \mathrm { lbs }}\)
\(F_{A, A N T 1, z}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{ANT1z}}\right) \times \mathrm{A}_{\mathrm{f}, \mathrm{ANT1z}}=37.080 \mathrm{lbs}\)
\(\mathrm{F}_{\mathrm{A}, \mathrm{ANT} 2, \mathrm{x}}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{ANT} 2 \mathrm{x}}\right) \times \mathrm{A}_{\mathrm{f}, \mathrm{ANT} 2 \mathrm{x}}=631.243 \mathrm{lbs}\)
\(\mathrm{F}_{\mathrm{A}, \mathrm{ANT}, \mathrm{z}}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{ANT2z}}\right) \times \mathrm{A}_{\mathrm{f}, \mathrm{ANT} 2 \mathrm{z}}=\mathbf{2 3 2 . 9 5 9 \mathrm { lbs }}\)

\(\mathrm{F}_{\mathrm{A}, \mathrm{ANT}, \mathrm{z}}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{ANT} 3 \mathrm{z}}\right) \times \mathrm{A}_{\mathrm{f}, \mathrm{ANT} 3 \mathrm{z}}=42.851 \mathrm{lbs}\)
\(\mathrm{F}_{\mathrm{A}, \mathrm{ANTG}, \mathrm{x}}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{ANT} \text {, }}\right) \times \mathrm{A}_{\mathrm{f}, \text { ANT6x }}=\mathbf{8 5 . 5 9 9} \mathrm{lbs}\)
\(F_{A, A N T 6, z}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{ANTGz}}\right) \times \mathrm{A}_{\mathrm{f}, \mathrm{ANT} \text { 价 }}=31.035 \mathrm{lbs}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
WTVGroup \\
THE W-T GROUP, LLC 2675 PRATUM AVENUE HOFFMAN ESTATES, IL 60192 PHONE: (224) 293-6444
\end{tabular}} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Project \\
ML42100A: SCHRAGER
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{array}{|l|}
\hline \text { Job Ref. } \\
\text { 1911530T }
\end{array}
\]} \\
\hline & \multicolumn{4}{|l|}{\begin{tabular}{l}
Section \\
ANTENNA WIND LOADING
\end{tabular}} & \multicolumn{2}{|l|}{Sheet no./rev.
\[
11
\]} \\
\hline & Calc. by CJS & \[
\begin{array}{|l}
\text { Date } \\
07 / 08 / 2020
\end{array}
\] & Chk'd by & Date & App'd by & Date \\
\hline
\end{tabular}

\section*{Dead load}

Weight of AHFIG
Weight of FFHH
Weight of AHLOA
Weight of COVP
DLANT1 = 70.5 lbs
\(\mathrm{D}_{\text {ANT2 }}=\mathbf{1 2 7 . 6} \mathrm{lbs}\)
\(L_{\text {ANT3 }}=83.77 \mathrm{lbs}\)
\(\mathrm{DL}_{\text {ANT6 }}=19.0 \mathrm{lbs}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
WTV Group \\
THE W-T GROUP, LLC \\
2675 PRATUM AVENUE HOFFMAN ESTATES, IL 60192 \\
PHONE: (224) 293-6444
\end{tabular}} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Project \\
ML42100A: SCHRAGER
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Job Ref. } \\
& \text { 1911530T }
\end{aligned}
\]} \\
\hline & \multicolumn{4}{|l|}{\begin{tabular}{l}
Section \\
ANTENNA WIND LOADING - WITH ICE
\end{tabular}} & \multicolumn{2}{|l|}{Sheet no./rev.
\[
12
\]} \\
\hline & \begin{tabular}{l}
Calc. by \\
CJS
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { Date } \\
07 / 08 / 220
\end{array}
\] & Chk'd by & Date & App'd by & Date \\
\hline
\end{tabular}

\section*{ANTENNA WIND LOADING (ASCE 7-10 \& ANSI/TIA-222-G) - WITH ICE}

In accordance with ANSI / TIA-222-G Standard and ASCE 7-10

Ice Thickness
Risk category / Structure class
Importance factor (Table 2-3)
Wind direction probability factor (Table 2-2)
Exposure category (cl.26.7.3)
Topography
Topography factor not signifcant (Sect. 2.6.6.4)
Wind speed with Ice
Height of Antenna above grade
Height escalation factor for ice thickness
Thickness of radial glaze ice (Sect. 2.6.10)
\[
\mathrm{t}_{\mathrm{i}}=0.75 \mathrm{in}
\]

II
\(I=1.0\)
\(K_{d}=0.85\)
C
\(\mathrm{K}_{\mathrm{zt}}=1.0\)
\(V=40.0 \mathrm{mph}\)
\(\mathrm{z}=54.0 \mathrm{ft}\)
\(K_{i z}=\min \left((z / 33)^{0.10}, 1.4\right)=1.050\)
\(\mathrm{t}_{\mathrm{iz}}=\mathrm{t}_{\mathrm{i}} \times \mathrm{I} \times \mathrm{K}_{\mathrm{iz}} \times \mathrm{K}_{\mathrm{zt}}{ }^{0.35} \times 2=1.576\) in
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Appurtenance } & \multicolumn{4}{|c|}{ Without Ice } & \multicolumn{4}{c|}{ With Ice } \\
\cline { 2 - 10 } & \begin{tabular}{c} 
Weight \\
(lb)
\end{tabular} & \begin{tabular}{c} 
Height \\
(in)
\end{tabular} & \begin{tabular}{c} 
Width \\
(in)
\end{tabular} & \begin{tabular}{c} 
Depth \\
(in)
\end{tabular} & \begin{tabular}{c} 
Weight \\
(lb)
\end{tabular} & \begin{tabular}{c} 
Height \\
(in)
\end{tabular} & \begin{tabular}{c} 
Width \\
(in)
\end{tabular} & \begin{tabular}{c} 
Depth \\
(in)
\end{tabular} \\
\hline AAHF & 103.62 & 25.63 & 19.72 & 10.32 & 107.29 & 28.78 & 22.87 & 13.47 \\
\hline FFHH & 127.6 & 95.9 & 25.2 & 9.3 & 407.23 & 99.05 & 28.35 & 12.45 \\
\hline AHFIG & 70.5 & 27.3 & 12.1 & 5.2 & 137.68 & 30.45 & 15.25 & 8.35 \\
\hline AHLOA & 83.77 & 22.05 & 12.13 & 7.44 & 94.60 & 25.20 & 15.28 & 10.59 \\
\hline COVP & 19.0 & 20.38 & 16.08 & 5.83 & 71.03 & 23.53 & 19.23 & 8.98 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline WTVGroup & \multicolumn{4}{|l|}{\begin{tabular}{l}
Project \\
ML42100A: SCHRAGER
\end{tabular}} & \multicolumn{2}{|l|}{Job Ref. 1911530T} \\
\hline THE W-T GROUP, LLC & \multicolumn{4}{|l|}{\begin{tabular}{l}
Section \\
ANTENNA WIND LOADING - WITH ICE
\end{tabular}} & Sheet n 13 & \\
\hline \begin{tabular}{l}
HOFFMAN ESTATES, IL 60192 \\
PHONE: (224) 293-6444
\end{tabular} & \begin{tabular}{l}
Calc. by \\
CJS
\end{tabular} & \[
\begin{aligned}
& \text { Date } \\
& \text { 07/08/220 }
\end{aligned}
\] & Chk'd by & Date & App'd by & Date \\
\hline
\end{tabular}

\section*{ANTENNA WIND LOADING (ASCE 7-10 \& ANSI/TIA-222-G)}

In accordance with ANSI / TIA-222-G Standard and ASCE 7-10

\section*{Antenna and mounting pipe data}

Width of mounting pipe
```

$\mathrm{W}_{\text {pipe }}=2.375 \mathrm{in}$

$$
\begin{aligned}
& \mathrm{W}_{\text {pipe }}=2.375 \mathrm{in} \\
& \mathrm{H}_{\text {pipe }}=8.0 \mathrm{ft} \\
& \mathrm{~W}_{\text {ANT }}=\mathbf{2 2 . 8 7} \mathrm{in} \\
& \mathrm{D}_{\text {ANT }}=\mathbf{1 3 . 4 7} \mathrm{in} \\
& \mathrm{H}_{\text {ANT }}=\mathbf{2 8 . 7 8} \mathrm{in} \\
& \mathrm{z}=54.0 \mathrm{ft}
\end{aligned}
$$

$$
\mathrm{V}=\mathbf{4 0 . 0} \mathrm{mph}
$$

II

$$
I=1.0
$$

$$
\mathrm{K}_{\mathrm{d}}=0.85
$$

C

$$
G_{h}=0.85
$$

$K_{z t}=1.00$
$\mathrm{z}_{\mathrm{g}}=900 \mathrm{ft}$
$\alpha=9.5$
$\mathrm{K}_{\mathrm{e}}=1.00$
$K_{z \text { min }}=\max \left(2.01 \times\left(\mathrm{z} / \mathrm{z}_{\mathrm{g}}\right)^{\wedge}(2 / \alpha), 0.85\right)=1.112$
$K_{z}=\min \left(K_{z \min }, 2.01\right)=1.112$
$\varepsilon=1.00$
$q_{h}=0.00256 \times K_{z} \times K_{z t} \times K_{d} \times V^{2} \times 1 \mathrm{psf} / \mathrm{mph}^{2}=3.870 \mathrm{psf}$

```
Height of mounting pipe
Width of AAHF
Depth of AAHF
Height of AAHF
Height of Antenna above grade
General wind load requirements
Basic wind speed

Risk category / Structure class
Importance factor (Table 2-3)
Wind direction probability factor (Table 2-2)
Exposure category (cl.26.7.3)
Gust effect factor (Sect. 2.6.7)

\section*{Topography}

Topography factor not signifcant (Sect. 2.6.6.4)
Wind pressure
Nominal height of atmospheric boundary layer
3 -second gust wind speed power law exponent
Terrain constant
Minimum value for \(\mathrm{K}_{z}\)
Velocity pressure coefficient (Sect. 2.6.5.2)
Ratio of solid area to gross area
Velocity pressure

\section*{Wind force coefficient of mounting pipe}

Area of mounting pipe
Aspect ratio of mounting pipe
Velocity coefficient
Force coefficient for round members (Table 2-8)
\(A_{f, \text { pipe }}=W_{\text {pipe }} \times H_{\text {pipe }}=1.583 \mathrm{ft}^{2}\)
\(A R_{\text {pipe }}=H_{\text {pipe }} / W_{\text {pipe }}=40.421\)
\(C=\left(I \times K_{z} \times K_{z t} \wedge^{\wedge}(1 / 2) \times V \times W_{\text {pipe }}=\mathbf{1 2 . 2 4 2}\right.\)
\(C_{\text {a,pipe }}=i f\left(A R_{\text {pipe }}<25,0.8,1.2\right)=\mathbf{1 . 2 0 0}\)

\section*{Wind force coefficient of AAHF}

Area of AAHF (x-axis)
Area of AAHF (z-axis)
Aspect ratio of AAHF (x-axis)
Aspect ratio of AAHF (z-axis)
Force coefficient for flat members (x-axis)
Force coefficient for flat members (z-axis)
\(\mathrm{A}_{\mathrm{f}, \mathrm{ANTX}}=\mathrm{W}_{\mathrm{ANT}} \times \mathrm{H}_{\mathrm{ANT}}=4.571 \mathrm{ft}^{2}\)
\(\mathrm{A}_{\mathrm{f}, \text { ANTz }}=\mathrm{D}_{\mathrm{ANT}} \times \mathrm{H}_{\mathrm{ANT}}=2.692 \mathrm{ft}^{2}\)
ARANTx \(=\) Hant \(_{\text {An }} / W_{\text {ANt }}=1.258\)
ARantz \(=\) Hant \(_{\text {ant }} /\) Dant \(=2.137\)
\(\mathrm{C}_{\mathrm{a}, \mathrm{ANTx}}=\mathrm{if}\left(\mathrm{AR}_{\text {ANTx }}<25,1.4,2.0\right)=\mathbf{1 . 4 0 0}\)
\(\mathrm{C}_{\mathrm{a}, \mathrm{ANTz}}=\mathrm{if}\left(\right.\) AR \(\left._{\text {ANTz }}<25,1.4,2.0\right)=1.400\)

\section*{Wind forces}

Wind force on mounting pipe
Distributed load on mounting pipe
\(F_{\text {A, pipe }}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\text {a,pipe }}\right) \times \mathrm{Af}_{\mathrm{f}, \text { pipe }}=\mathbf{3 1 . 6 6 7} \mathrm{lbs}\)
\(\mathrm{w}_{\text {pipe }}=\mathrm{F}_{\mathrm{A}, \text { pipe }} / \mathrm{H}_{\text {pipe }}=3.958 \mathrm{plf}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
WT Group \\
THE W-T GROUP, LLC \\
2675 PRATUM AVENUE HOFFMAN ESTATES, IL 60192 \\
PHONE: (224) 293-6444
\end{tabular}} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Project \\
ML42100A: SCHRAGER
\end{tabular}} & \multicolumn{2}{|l|}{Job Ref. 1911530T} \\
\hline & \multicolumn{4}{|l|}{\begin{tabular}{l}
Section \\
ANTENNA WIND LOADING - WITH ICE
\end{tabular}} & \multicolumn{2}{|l|}{Sheet no./rev.
\[
14
\]} \\
\hline & Calc. by CJS & \[
\begin{array}{|l|}
\hline \text { Date } \\
07 / 08 / 220
\end{array}
\] & Chk'd by & Date & App'd by & Date \\
\hline
\end{tabular}

Wind force on AAHF (x-direction)
\(\mathrm{F}_{\mathrm{A}, \mathrm{ANT}, \mathrm{x}}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{ANTx}}\right) \times \mathrm{A}_{\mathrm{f}, \mathrm{ANTx}}=\mathbf{9 1 . 4 1 6 \mathrm { lbs }}\)
Wind force on AAHF (z-direction)
\(\mathrm{F}_{\mathrm{A}, \mathrm{ANT}, \mathrm{z}}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{ANTz}}\right) \times \mathrm{A}_{\mathrm{f}, \text { ANTz }}=\mathbf{5 3 . 8 4 3 \mathrm { lbs }}\)

\section*{Dead load}

Weight of AAHF
\(D L_{\text {ANT }}=\mathbf{1 0 7 . 2 9} \mathrm{lbs}\)

\section*{ANTENNA WIND LOADING (ASCE 7-10 \& ANSI/TIA-222-G)}

In accordance with ANSI / TIA-222-G Standard and ASCE 7-10

\section*{Antenna and mounting pipe data}

Width of mounting pipe
Height of mounting pipe
Width of AHFIG
Depth of AHFIG
Height of AHFIG
Width of FFHH
Depth of FFHH
Height of FFHH
Width of AHLOA
Depth of AHLOA
Height of AHLOA
Width of COVP
Depth of COVP
Height of COVP
Height of Antenna above grade

\section*{General wind load requirements}

Basic wind speed
Risk category / Structure class
Importance factor (Table 2-3)
Wind direction probability factor (Table 2-2)
Exposure category (cl.26.7.3)
Gust effect factor (Sect. 2.6.7)

\section*{Topography}

Topography factor not signifcant (Sect. 2.6.6.4)

\section*{Wind pressure}

Nominal height of atmospheric boundary layer
3 -second gust wind speed power law exponent
Terrain constant
Minimum value for \(\mathrm{K}_{\mathrm{z}}\)
Velocity pressure coefficient (Sect. 2.6.5.2)
Ratio of solid area to gross area
Velocity pressure

\section*{Wind force coefficient of mounting pipe}

Area of mounting pipe
\(\mathrm{W}_{\text {pipe }}=2.375 \mathrm{in}\)
\(H_{\text {pipe }}=8.0 \mathrm{ft}\)
\(\mathrm{W}_{\text {ANT1 }}=15.25 \mathrm{in}\)
\(\mathrm{D}_{\text {ANT1 }}=8.35 \mathrm{in}\)
Hant1 \(=30.45\) in
\(\mathrm{W}_{\text {ANT2 }}=28.35 \mathrm{in}\)
\(D_{\text {ANT2 }}=12.45\) in
\(\mathrm{H}_{\text {ANT2 }}=99.05 \mathrm{in}\)
\(\mathrm{W}_{\text {ANT3 }}=15.28\) in
Dant3 \(=10.59\) in
\(\mathrm{H}_{\text {ANT3 }}=25.20\) in
\(\mathrm{W}_{\text {ANT6 }}=16.08\) in
\(\mathrm{D}_{\text {ANT6 }}=5.83\) in
\(H_{\text {ANT6 }}=20.38\) in
\(\mathrm{z}=51.0 \mathrm{ft}\)
\(\mathrm{V}=\mathbf{4 0 . 0} \mathrm{mph}\)
II
\(I=1.0\)
\(\mathrm{K}_{\mathrm{d}}=0.85\)
C
\(\mathrm{G}_{\mathrm{h}}=0.85\)
\(\mathrm{K}_{\mathrm{zt}}=\mathbf{1 . 0 0}\)
\(\mathrm{z}_{\mathrm{g}}=900 \mathrm{ft}\)
\(\alpha=9.5\)
\(\mathrm{K}_{\mathrm{e}}=\mathbf{1 . 0 0}\)
\(K_{z \text { min }}=\max \left(2.01 \times\left(z / \mathrm{zg}_{\mathrm{g}}\right)^{\wedge}(2 / \alpha), 0.85\right)=1.098\)
\(K_{z}=\min \left(K_{z \min }, 2.01\right)=1.098\)
\(\varepsilon=1.00\)
\(\mathrm{q}_{\mathrm{h}}=0.00256 \times \mathrm{K}_{\mathrm{z}} \times \mathrm{K}_{\mathrm{zt}} \times \mathrm{K}_{\mathrm{d}} \times \mathrm{V}^{2} \times 1 \mathrm{psf} / \mathrm{mph}^{2}=\mathbf{3 . 8 2 4} \mathrm{psf}\)
\(A_{f, \text { pipe }}=W_{\text {pipe }} \times H_{\text {pipe }}=1.583 \mathrm{ft}^{2}\)

THE W-T GROUP, LLC 2675 PRATUM AVENUE hoffman estates, IL 60192 PHONE: (224) 293-6444
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{3}{|l|}{ Project } & Job Ref. \\
ML42100A: SCHRAGER & & 1911530 T
\end{tabular}

Aspect ratio of mounting pipe
Velocity coefficient
Force coefficient for round members (Table 2-8)

\section*{Wind force coefficient of AHFIG}

Area of AHFIG (x-axis)
Area of AHFIG (z-axis)
Aspect ratio of AHFIG (x-axis)
Aspect ratio of AHFIG (z-axis)
Force coefficient for flat members (x-axis)
Force coefficient for flat members (z-axis)
Wind force coefficient of FFHH
Area of FFHH (x-axis)
Area of FFHH (z-axis)
Aspect ratio of FFHH (x-axis)
Aspect ratio of FFHH (z-axis)
Force coefficient for flat members (x-axis)
Force coefficient for flat members (z-axis)
Wind force coefficient of AHLOA
Area of AHLOA (x-axis)
Area of AHLOA (z-axis)
Aspect ratio of AHLOA (x-axis)
Aspect ratio of AHLOA (z-axis)
Force coefficient for flat members (x-axis)
Force coefficient for flat members (z-axis)
Wind force coefficient of COVP
Area of COVP (x-axis)
Area of COVP (z-axis)
Aspect ratio of COVP (x-axis)
Aspect ratio of COVP (z-axis)
Force coefficient for flat members (x-axis)
Force coefficient for flat members (z-axis)

\section*{Wind forces}

Wind force on mounting pipe
Distributed load on mounting pipe
Wind force on AHFIG (x-direction)
Wind force on AHFIG (z-direction)
Wind force on FFHH (x-direction)
Wind force on FFHH (z-direction)
Wind force on AHLOA (x-direction)
Wind force on AHLOA (z-direction)
Wind force on COVP (x-direction)
Wind force on COVP (z-direction)
\(A R_{\text {pipe }}=H_{\text {pipe }} / W_{\text {pipe }}=40.421\)
\(\mathrm{C}=\left(\mathrm{I} \times \mathrm{K}_{\mathrm{z}} \times \mathrm{K}_{\mathrm{zt}}\right)^{\wedge}(1 / 2) \times \mathrm{V} \times \mathrm{W}_{\text {pipe }}=\mathbf{1 2 . 1 6 9}\)
\(C_{\text {a,pipe }}=i f\left(A_{\text {pipe }}<25,0.8,1.2\right)=\mathbf{1 . 2 0 0}\)
\(\mathrm{A}_{\mathrm{f}, \mathrm{ANT} 1 \mathrm{x}}=\mathrm{W}_{\mathrm{ANT} 1} \times \mathrm{H}_{\mathrm{ANT} 1}=3.225 \mathrm{ft}^{2}\)
\(\mathrm{A}_{\mathrm{f}, \mathrm{ANT} 1 \mathrm{z}}=\mathrm{D}_{\text {ANT } 1} \times \mathrm{H}_{\text {ANT } 1}=1.766 \mathrm{ft}^{2}\)
AR \(_{\text {ANTT1 }}=\) Hant \(1 / W_{\text {ANT } 1}=1.997\)
AR \(_{\text {ANT1 } 12}=\) HaNT1 \(/\) DANT1 \(=3.647\)
\(\mathrm{C}_{\mathrm{a}, \mathrm{ANT1x}}=\mathrm{if}\left(\mathrm{AR}_{\text {ANT1x }}<25,1.4,2.0\right)=\mathbf{1 . 4 0 0}\)
\(\mathrm{C}_{\mathrm{a}, \text { ANT1z }}=\mathrm{if}(\) ARANT1z \(<25,1.4,2.0)=\mathbf{1 . 4 0 0}\)
\(\mathrm{A}_{\mathrm{f}, \text { ANT2 }}=\mathrm{W}_{\text {ANT2 }} \times \mathrm{H}_{\text {ANT2 }}=19.500 \mathrm{ft}^{2}\)
\(\mathrm{A}_{\mathrm{f}, \mathrm{ANT} 2 \mathrm{z}}=\mathrm{D}_{\text {ANT2 }} \times \mathrm{H}_{\text {ANT2 }}=8.564 \mathrm{ft}^{2}\)
AR \(_{\text {ANT2x }}=\) Hant2 \(/ \mathrm{W}_{\text {ANT2 }}=3.494\)
ARANT2z \(=\) Hant2 \(/ D_{\text {ANT2 }}=7.956\)
\(\mathrm{C}_{\mathrm{a}, \text { ANT2x }}=\mathrm{if}\left(\mathrm{AR}_{\text {ANT2x }}<25,1.4,2.0\right)=\mathbf{1 . 4 0 0}\)
\(\mathrm{C}_{\mathrm{a}, \mathrm{ANT} 2 \mathrm{z}}=\mathrm{if}\left(\mathrm{AR}_{\text {ANT2z }}<25,1.4,2.0\right)=\mathbf{1 . 4 0 0}\)
\(\mathrm{A}_{\mathrm{f}, \mathrm{ANT} 3 \mathrm{x}}=\mathrm{W}_{\text {ANT3 }} \times \mathrm{H}_{\mathrm{ANT} 3}=2.674 \mathrm{ft}^{2}\)
\(\mathrm{A}_{\mathrm{f}, \mathrm{ANT3z}}=\mathrm{D}_{\mathrm{ANT}} \times \mathrm{H}_{\text {ANT3 }}=1.853 \mathrm{ft}^{2}\)
ARANT3 \(=\) Hant3 \(/ W_{\text {Ant3 }}=\mathbf{1 . 6 4 9}\)
AR \(_{\text {ANT3z }}=\) Hant3 \(/ D_{\text {ANT3 }}=\mathbf{2 . 3 8 0}\)
\(\mathrm{C}_{\mathrm{a}, \text { ANT3x }}=\mathrm{if}\left(\mathrm{AR}_{\text {ANT3x }}<25,1.4,2.0\right)=\mathbf{1 . 4 0 0}\)
\(\mathrm{C}_{\mathrm{a}, \mathrm{ANT3z}}=\mathrm{if}\left(\mathrm{AR}_{\text {ANT3z }}<25,1.4,2.0\right)=\mathbf{1 . 4 0 0}\)
\(\mathrm{A}_{\mathrm{f}, \text { ANT6x }}=\mathrm{W}_{\text {ANT6 }} \times \mathrm{H}_{\text {ANT6 }}=2.276 \mathrm{ft}^{2}\)
\(\mathrm{A}_{\mathrm{f}, \mathrm{ANTGz}}=\mathrm{D}_{\text {ANT6 }} \times \mathrm{H}_{\text {ANT6 }}=0.825 \mathrm{ft}^{2}\)
AR \(_{\text {ANT6 }}=\) Hante \(/ W_{\text {ANT6 }}=\mathbf{1 . 2 6 7}\)
ARantgz \(=\) Hanta \(/\) Dant6 \(=3.496\)
\(\mathrm{C}_{\mathrm{a}, \text { ANT6x }}=\mathrm{if}(\) ARant \(\mathrm{A} x<25,1.4,2.0)=\mathbf{1 . 4 0 0}\)
\(\mathrm{C}_{\mathrm{a}, \text { ANT6z }}=\mathrm{if}\left(\right.\) AR \(\left._{\text {ANTGz }}<25,1.4,2.0\right)=\mathbf{1 . 4 0 0}\)
\(F_{\text {A,pipe }}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\text {a,pipe }}\right) \times \mathrm{A}_{\mathrm{f}, \mathrm{pipe}}=\mathbf{3 1 . 6 6 7 \mathrm { lbs }}\)
\(\mathrm{W}_{\text {pipe }}=\mathrm{F}_{\text {A,pipe }} / \mathrm{H}_{\text {pipe }}=3.958 \mathrm{plf}\)
\(\mathrm{F}_{\mathrm{A}, \mathrm{ANT1}, \mathrm{x}}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{ANT} 1 \mathrm{x}}\right) \times \mathrm{A}_{\mathrm{f}, \text { ANT1x }}=\mathbf{6 4 . 4 9 5 \mathrm { lbs }}\)
\(F_{A, A N T 1, z}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{ANT1z}}\right) \times \mathrm{A}_{\mathrm{f}, \mathrm{ANT1z}}=35.314 \mathrm{lbs}\)
\(\mathrm{F}_{\mathrm{A}, \mathrm{ANT}, \mathrm{x}}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \text { ANT2x }}\right) \times \mathrm{A}_{\mathrm{f}, \text { ANT2x }}=390.009 \mathrm{lbs}\)
\(\mathrm{F}_{\mathrm{A}, \mathrm{ANT}, \mathrm{z}}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{ANT} 2 \mathrm{z}}\right) \times \mathrm{A}_{\mathrm{f}, \text { ANT2z }}=\mathbf{1 7 1 . 2 7 4 \mathrm { lbs }}\)
\(\mathrm{F}_{\mathrm{A}, \mathrm{ANT}, \mathrm{x}}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{ANT}, \mathrm{x}}\right) \times \mathrm{A}_{\mathrm{f}, \text { ANT3x }}=53.480 \mathrm{lbs}\)
\(\mathrm{F}_{\mathrm{A}, \mathrm{ANT}, \mathrm{z}}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{ANT} 3 \mathrm{z}}\right) \times \mathrm{A}_{\mathrm{f}, \mathrm{ANT} 3 \mathrm{z}}=\mathbf{3 7 . 0 6 5 \mathrm { lbs }}\)
\(\mathrm{F}_{\mathrm{A}, \mathrm{ANTG}, \mathrm{x}}=\max \left(20 \mathrm{psf}, \mathrm{q}_{\mathrm{h}} \times \mathrm{G}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{a}, \mathrm{ANT} \text {, }}\right) \times \mathrm{A}_{\mathrm{f}, \text { ANT6x }}=45.515 \mathrm{lbs}\)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
WTVGroup \\
THE W-T GROUP, LLC 2675 PRATUM AVENUE HOFFMAN ESTATES, IL 60192 PHONE: (224) 293-6444
\end{tabular}} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Project \\
ML42100A: SCHRAGER
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{array}{|l|}
\hline \text { Job Ref. } \\
\text { 1911530T }
\end{array}
\]} \\
\hline & \multicolumn{4}{|l|}{\begin{tabular}{l}
Section \\
ANTENNA WIND LOADING - WITH ICE
\end{tabular}} & \multicolumn{2}{|l|}{Sheet no./rev.
\[
16
\]} \\
\hline & Calc. by CJS & \[
\begin{array}{|l|}
\hline \text { Date } \\
07 / 08 / 220
\end{array}
\] & Chk'd by & Date & App'd by & Date \\
\hline
\end{tabular}

\section*{Dead load}

Weight of AHFIG
Weight of FFHH
Lant \(=137.68 \mathrm{lbs}\)

Weight of AHLOA
Weight of COVP

DLANT2 \(=407.23 \mathrm{lbs}\)
DLant3 \(=94.60 \mathrm{lbs}\)
DLANTG \(=71.03 \mathrm{lbs}\)

\begin{tabular}{|l|c|l|}
\hline The W-T Group, LLC & & Page -17 \\
\hline CJS & ML42100A: SCHRAGER & July 8, 2020 at 9:08 AM \\
\hline 1911530T & 3D MODEL & ML42100A_Antenna Mount.r3d \\
\hline
\end{tabular}

\begin{tabular}{|l|c|l|}
\hline The W-T Group, LLC & & Page -18 \\
\hline CJS & ML42100A: SCHRAGER & July 8, 2020 at 9:09 AM \\
\hline 1911530T & NODE NUMBERS & ML42100A_Antenna Mount.r3d \\
\hline
\end{tabular}

\begin{tabular}{|l|c|l|}
\hline The W-T Group, LLC & & Page -19 \\
\hline CJS & ML42100A: SCHRAGER & July 8,2020 at \(9: 10\) AM \\
\hline 1911530 T & MEMBER LABELS & ML42100A_Antenna Mount.r3d \\
\hline
\end{tabular}

\begin{tabular}{|l|c|l|}
\hline The W-T Group, LLC & & Page -20 \\
\hline CJS & ML42100A: SCHRAGER & July 8, 2020 at \(9: 10\) AM \\
\hline 1911530 T & MEMBER SHAPES & ML42100A_Antenna Mount.r3d \\
\hline
\end{tabular}


Loads: BLC 1, DL
Envelope Only Solution
\begin{tabular}{|l|c|l|}
\hline The W-T Group, LLC & & Page -21 \\
\hline CJS & ML42100A: SCHRAGER & July 8, 2020 at \(9: 11\) AM \\
\hline 1911530 T & DEAD LOAD & ML42100A_Antenna Mount.r3d \\
\hline
\end{tabular}

\begin{tabular}{|l|c|l|}
\hline The W-T Group, LLC & & Page -22 \\
\hline CJS & ML42100A: SCHRAGER & July 8, 2020 at \(9: 11\) AM \\
\hline 1911530 T & DEAD LOAD (ICE) & ML42100A_Antenna Mount.r3d \\
\hline
\end{tabular}

\begin{tabular}{|l|c|l|}
\hline The W-T Group, LLC & & Page -23 \\
\hline CJS & ML42100A: SCHRAGER & July 8, 2020 at 9:12 AM \\
\hline 1911530 T & WIND LOAD X-DIRECTION & ML42100A_Antenna Mount.r3d \\
\hline
\end{tabular}


Loads: BLC 3, WLZ
Envelope Only Solution
\begin{tabular}{|l|c|l|}
\hline The W-T Group, LLC & & Page -24 \\
\hline CJS & ML42100A: SCHRAGER & July 8, 2020 at \(9: 12\) AM \\
\hline 1911530 T & WIND LOAD Z-DIRECTION & ML42100A_Antenna Mount.r3d \\
\hline
\end{tabular}

\begin{tabular}{|l|c|l|}
\hline The W-T Group, LLC & & Page -25 \\
\hline CJS & ML42100A: SCHRAGER & July 8, 2020 at 9:12 AM \\
\hline 1911530 T & WIND LOAD X-DIRECTION (ICE) & ML42100A_Antenna Mount.r3d \\
\hline
\end{tabular}

\begin{tabular}{|l|c|l|}
\hline The W-T Group, LLC & & Page -26 \\
\hline CJS & ML42100A: SCHRAGER & July 8, 2020 at 9:13 AM \\
\hline 1911530T & WIND LOAD Z-DIRECTION (ICE) & ML42100A_Antenna Mount.r3d \\
\hline
\end{tabular}


Member Code Checks Displayed (Enveloped)
Envelope Only Solution
\begin{tabular}{|l|c|l|}
\hline The W-T Group, LLC & & Page -27 \\
\hline CJS & ML42100A: SCHRAGER & July 8, 2020 at 9:14 AM \\
\hline 1911530 T & MEMBER STRESS RATIOS & ML42100A_Antenna Mount.r3d \\
\hline
\end{tabular}

\section*{(Global) Model Settings}
\begin{tabular}{|l|l|}
\hline Display Sections for Member Calcs & 5 \\
\hline Max Internal Sections for Member Calcs & 97 \\
\hline Include Shear Deformation? & Yes \\
\hline Increase Nailing Capacity for Wind? & Yes \\
\hline Include Warping? & Yes \\
\hline Trans Load Btwn Intersecting Wood Wall? & Yes \\
\hline Area Load Mesh (in^2) & 144 \\
\hline Merge Tolerance (in) & .12 \\
\hline P-Delta Analysis Tolerance & \(0.50 \%\) \\
\hline Include P-Delta for Walls? & Yes \\
\hline Automatically Iterate Stiffness for Walls? & Yes \\
\hline Max Iterations for Wall Stiffness & 3 \\
\hline Gravity Acceleration (in/sec^2) & 386.4 \\
\hline Wall Mesh Size (in) & 24 \\
\hline Eigensolution Convergence Tol. (1.E-) & 4 \\
\hline Vertical Axis & Y \\
\hline Global Member Orientation Plane & XZ \\
\hline Static Solver & Sparse Accelerated \\
\hline Dynamic Solver & Accelerated Solver \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Hot Rolled Steel Code & AISC 15th(360-16): LRFD \\
\hline Adjust Stiffness? & Yes(lterative) \\
\hline RISAConnection Code & AISC 14th(360-10): ASD \\
\hline Cold Formed Steel Code & AISI S100-12: ASD \\
\hline Wood Code & AWC NDS-15: ASD \\
\hline Wood Temperature & < 100F \\
\hline Concrete Code & ACI 318-14 \\
\hline Masonry Code & ACI 530-13: ASD \\
\hline Aluminum Code & AA ADM1-15: ASD - Building \\
\hline Stainless Steel Code & AISC 14th(360-10): ASD \\
\hline Adjust Stiffness? & Yes(Iterative) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Number of Shear Regions & 4 \\
\hline Region Spacing Increment (in) & 4 \\
\hline Biaxial Column Method & Exact Integration \\
\hline Parme Beta Factor (PCA) & .65 \\
\hline Concrete Stress Block & Rectangular \\
\hline Use Cracked Sections? & Yes \\
\hline Use Cracked Sections Slab? & No \\
\hline Bad Framing Warnings? & No \\
\hline Unused Force Warnings? & Yes \\
\hline Min 1 Bar Diam. Spacing? & No \\
\hline Concrete Rebar Set & REBAR_SET_ASTMA615 \\
\hline Min \% Steel for Column & 1 \\
\hline Max \% Steel for Column & 8 \\
\hline
\end{tabular}
(Global) Model Settings, Continued
\begin{tabular}{|l|l|}
\hline Seismic Code & ASCE 7-10 \\
\hline Seismic Base Elevation (in) & Not Entered \\
\hline Add Base Weight? & Yes \\
\hline Ct X & .02 \\
\hline Ct Z & .02 \\
\hline T X (sec) & Not Entered \\
\hline T Z (sec) & Not Entered \\
\hline R X & 3 \\
\hline R Z & 3 \\
\hline Ct Exp. X & .75 \\
\hline Ct Exp. Z & .75 \\
\hline SD1 & 1 \\
\hline SDS & 1 \\
\hline S1 & 1 \\
\hline TL (sec) & 5 \\
\hline Risk Cat & 1 or II \\
\hline Drift Cat & Other \\
\hline Om Z & 1 \\
\hline Om X & 1 \\
\hline Cd Z & 4 \\
\hline Cd X & 4 \\
\hline Rho Z & 1 \\
\hline Rho X & 1 \\
\hline & \\
\hline
\end{tabular}

Joint Coordinates and Temperatures
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Label & X [in] & Y [in] & Z [in] & Temp [F] & Detach From Diap... \\
\hline 1 & N1 & 0 & 0 & 0 & 0 & \\
\hline 2 & N2 & 0 & 72 & 0 & 0 & \\
\hline 3 & N3 & 0 & 6 & 0 & 0 & \\
\hline 4 & N4 & 0 & 36 & 0 & 0 & \\
\hline 5 & N5 & 0 & 0 & -36 & 0 & \\
\hline 6 & N6 & 0 & 72 & -36 & 0 & \\
\hline 7 & N7 & 0 & 6 & -36 & 0 & \\
\hline 8 & N8 & 0 & 36 & -36 & 0 & \\
\hline 9 & N9 & -12 & 6 & -36 & 0 & \\
\hline 10 & N10 & -12 & 36 & -36 & 0 & \\
\hline 11 & N11 & -12 & 6 & 0 & 0 & \\
\hline 12 & N12 & -12 & 36 & 0 & 0 & \\
\hline 13 & N13 & 0 & 63 & 0 & 0 & \\
\hline 14 & N14 & 0 & 63 & -36 & 0 & \\
\hline 15 & N15 & 0 & 9 & 0 & 0 & \\
\hline 16 & N16 & 0 & 40 & -36 & 0 & \\
\hline 17 & N17 & -48 & 0 & 0 & 0 & \\
\hline 18 & N18 & -48 & 0 & 72 & 0 & \\
\hline 19 & N19 & -66 & 0 & 0 & 0 & \\
\hline 20 & N20 & -66 & 0 & 72 & 0 & \\
\hline 21 & N21 & -48 & 22 & 0 & 0 & \\
\hline 22 & N22 & -48 & 22 & 72 & 0 & \\
\hline 23 & N23 & -66 & 22 & 0 & 0 & \\
\hline 24 & N24 & -66 & 22 & 72 & 0 & \\
\hline 25 & N25 & -36 & 0 & 0 & 0 & \\
\hline 26 & N26 & -36 & 0 & 72 & 0 & \\
\hline 27 & N27 & -78 & 0 & 0 & 0 & \\
\hline 28 & N28 & -78 & 0 & 72 & 0 & \\
\hline 29 & N29 & -66 & 22 & 54 & 0 & \\
\hline 30 & N30 & -48 & 22 & 54 & 0 & \\
\hline
\end{tabular}

Joint Coordinates and Temperatures (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Label & X [in] & Y [in] & Z [in] & Temp [F] & Detach From Diap... \\
\hline 31 & N31 & -66 & 22 & 36 & 0 & \\
\hline 32 & N32 & -48 & 22 & 36 & 0 & \\
\hline 33 & N33 & -66 & 22 & 18 & 0 & \\
\hline 34 & N34 & -48 & 22 & 18 & 0 & \\
\hline 35 & N35 & -57 & 22 & 54 & 0 & \\
\hline 36 & N36 & -57 & 22 & 36 & 0 & \\
\hline 37 & N37 & -57 & 22 & 18 & 0 & \\
\hline 38 & N38 & -12 & 39 & 3 & 0 & \\
\hline 39 & N39 & -12 & 39 & -3 & 0 & \\
\hline 40 & N40 & -12 & 39 & 0 & 0 & \\
\hline 41 & N41 & -12 & 36 & 3 & 0 & \\
\hline 42 & N42 & -12 & 36 & -3 & 0 & \\
\hline 43 & N43 & -12 & 33 & 0 & 0 & \\
\hline 44 & N44 & -12 & 33 & 3 & 0 & \\
\hline 45 & N45 & -12 & 33 & -3 & 0 & \\
\hline 46 & N46 & -12 & 9 & 0 & 0 & \\
\hline 47 & N47 & -12 & 9 & 3 & 0 & \\
\hline 48 & N48 & -12 & 9 & -3 & 0 & \\
\hline 49 & N49 & -12 & 6 & 3 & 0 & \\
\hline 50 & N50 & -12 & 6 & -3 & 0 & \\
\hline 51 & N51 & -12 & 3 & 0 & 0 & \\
\hline 52 & N52 & -12 & 3 & -3 & 0 & \\
\hline 53 & N53 & -12 & 3 & 3 & 0 & \\
\hline 54 & N54 & -12 & 39 & -33 & 0 & \\
\hline 55 & N55 & -12 & 39 & -39 & 0 & \\
\hline 56 & N56 & -12 & 39 & -36 & 0 & \\
\hline 57 & N57 & -12 & 36 & -39 & 0 & \\
\hline 58 & N58 & -12 & 36 & -33 & 0 & \\
\hline 59 & N59 & -12 & 33 & -36 & 0 & \\
\hline 60 & N60 & -12 & 33 & -33 & 0 & \\
\hline 61 & N61 & -12 & 33 & -39 & 0 & \\
\hline 62 & N62 & -12 & 9 & -39 & 0 & \\
\hline 63 & N63 & -12 & 9 & -33 & 0 & \\
\hline 64 & N64 & -12 & 9 & -36 & 0 & \\
\hline 65 & N65 & -12 & 6 & -39 & 0 & \\
\hline 66 & N66 & -12 & 6 & -33 & 0 & \\
\hline 67 & N67 & -12 & 3 & -39 & 0 & \\
\hline 68 & N68 & -12 & 3 & -36 & 0 & \\
\hline 69 & N69 & -12 & 3 & -33 & 0 & \\
\hline
\end{tabular}

\section*{Hot Rolled Steel Properties}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Label} & E [ksi] & G [ksi] & Nu & \multicolumn{2}{|l|}{Therm (/1... Density[k/..} & Yield[ksi] & Ry & Fu[ksi] & Rt \\
\hline 1 & A992 & 29000 & 11154 & . 3 & . 65 & . 49 & 50 & 1.1 & 65 & 1.1 \\
\hline 2 & A36 Gr. 36 & 29000 & 11154 & . 3 & . 65 & . 49 & 36 & 1.5 & 58 & 1.2 \\
\hline 3 & A572 Gr. 50 & 29000 & 11154 & . 3 & . 65 & . 49 & 50 & 1.1 & 65 & 1.1 \\
\hline 4 & A500 Gr.B RND & 29000 & 11154 & . 3 & . 65 & . 527 & 42 & 1.4 & 58 & 1.3 \\
\hline 5 & A500 Gr.B Rect & 29000 & 11154 & . 3 & . 65 & . 527 & 46 & 1.4 & 58 & 1.3 \\
\hline 6 & A53 Gr.B & 29000 & 11154 & . 3 & . 65 & . 49 & 35 & 1.6 & 60 & 1.2 \\
\hline 7 & A1085 & 29000 & 11154 & . 3 & . 65 & . 49 & 50 & 1.4 & 65 & 1.3 \\
\hline
\end{tabular}

Joint Boundary Conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Joint Label & X [k/in] & Y [k/in] & Z [k/in] & X Rot.[k-ft/rad] & Y Rot.[k-ft/rad] & Z Rot.[k-ft/rad] \\
\hline 1 & N11 & & & & & & \\
\hline 2 & N12 & & & & & & \\
\hline 3 & N9 & & & & & & \\
\hline 4 & N10 & & & & & & \\
\hline 5 & N18 & Reaction & Reaction & Reaction & & & \\
\hline 6 & N26 & Reaction & Reaction & Reaction & & & \\
\hline 7 & N20 & Reaction & Reaction & Reaction & & & \\
\hline 8 & N28 & Reaction & Reaction & Reaction & & & \\
\hline 9 & N19 & Reaction & Reaction & Reaction & & & \\
\hline 10 & N27 & Reaction & Reaction & Reaction & & & \\
\hline 11 & N17 & Reaction & Reaction & Reaction & & & \\
\hline 12 & N25 & Reaction & Reaction & Reaction & & & \\
\hline 13 & N54 & Reaction & Reaction & Reaction & & & \\
\hline 14 & N55 & Reaction & Reaction & Reaction & & & \\
\hline 15 & N56 & & & & & & \\
\hline 16 & N57 & & & & & & \\
\hline 17 & N58 & & & & & & \\
\hline 18 & N59 & & & & & & \\
\hline 19 & N60 & Reaction & Reaction & Reaction & & & \\
\hline 20 & N61 & Reaction & Reaction & Reaction & & & \\
\hline 21 & N62 & Reaction & Reaction & Reaction & & & \\
\hline 22 & N63 & Reaction & Reaction & Reaction & & & \\
\hline 23 & N64 & & & & & & \\
\hline 24 & N65 & & & & & & \\
\hline 25 & N66 & & & & & & \\
\hline 26 & N67 & Reaction & Reaction & Reaction & & & \\
\hline 27 & N68 & & & & & & \\
\hline 28 & N69 & Reaction & Reaction & Reaction & & & \\
\hline 29 & N38 & Reaction & Reaction & Reaction & & & \\
\hline 30 & N39 & Reaction & Reaction & Reaction & & & \\
\hline 31 & N40 & & & & & & \\
\hline 32 & N41 & & & & & & \\
\hline 33 & N42 & & & & & & \\
\hline 34 & N43 & & & & & & \\
\hline 35 & N44 & Reaction & Reaction & Reaction & & & \\
\hline 36 & N45 & Reaction & Reaction & Reaction & & & \\
\hline 37 & N46 & & & & & & \\
\hline 38 & N47 & Reaction & Reaction & Reaction & & & \\
\hline 39 & N48 & Reaction & Reaction & Reaction & & & \\
\hline 40 & N49 & & & & & & \\
\hline 41 & N50 & & & & & & \\
\hline 42 & N51 & & & & & & \\
\hline 43 & N52 & Reaction & Reaction & Reaction & & & \\
\hline 44 & N53 & Reaction & Reaction & Reaction & & & \\
\hline
\end{tabular}

\section*{Member Primary Data}


\section*{Member Primary Data (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Label} & \multicolumn{6}{|l|}{I Joint J JointK Joint Rotat... Section/Shape Type} & Design List & Material & \multirow[t]{2}{*}{Desig... Typical} \\
\hline 9 & M9 & N20 & N24 & & & L2x2x3 & Bea.. & Single Angle & A36 Gr. 36 & \\
\hline 10 & M10 & N24 & N22 & & & L2x2x3 & Bea... & Single Angle & A36 Gr. 36 & Typical \\
\hline 11 & M11 & N22 & N18 & & & L2x2x3 & Bea... & Single Angle & A36 Gr. 36 & Typical \\
\hline 12 & M12 & N19 & N23 & & & L2x2x3 & Bea.. & Single Angle & A36 Gr. 36 & Typical \\
\hline 13 & M13 & N23 & N21 & & & L2x2x3 & Bea... & Single Angle & A36 Gr. 36 & Typical \\
\hline 14 & M14 & N21 & N17 & & & L2x2x3 & Bea... & Single Angle & A36 Gr. 36 & Typical \\
\hline 15 & M15 & N24 & N23 & & & L2x2x3 & Bea.. & Single Angle & A36 Gr. 36 & Typical \\
\hline 16 & M16 & N22 & N21 & & & L2x2x3 & Bea... & Single Angle & A36 Gr. 36 & Typical \\
\hline 17 & M17 & N18 & N17 & & & L2x2x3 & Bea.. & Single Angle & A36 Gr. 36 & Typical \\
\hline 18 & M18 & N20 & N19 & & & L2x2x3 & Bea... & Single Angle & A36 Gr. 36 & Typical \\
\hline 19 & M19 & N23 & N17 & & & L2x2x3 & Bea... & Single Angle & A36 Gr. 36 & Typical \\
\hline 20 & M20 & N22 & N20 & & & L2x2x3 & Bea... & Single Angle & A36 Gr. 36 & Typical \\
\hline 21 & M21 & N19 & N24 & & & L2x2x3 & Bea... & Single Angle & A36 Gr. 36 & Typical \\
\hline 22 & M22 & N21 & N18 & & & L2x2x3 & Bea... & Single Angle & A36 Gr. 36 & Typical \\
\hline 23 & M23 & N33 & N34 & & & RIGID & None & None & RIGID & Typical \\
\hline 24 & M24 & N31 & N32 & & & RIGID & None & None & RIGID & Typical \\
\hline 25 & M25 & N29 & N30 & & & RIGID & None & None & RIGID & Typical \\
\hline
\end{tabular}

\section*{Basic Load Cases}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & BLC Description & Category & X Gravity & Y Gravity & Z Gravity & Joint & Point & Distributed & Area(Me... & Surface(P.. \\
\hline 1 & DL & DL & & -1 & & 7 & & & & \\
\hline 2 & WLX & WLX & & & & 7 & & 8 & & \\
\hline 3 & WLZ & WLZ & & & & 7 & & 16 & & \\
\hline 4 & DL ICE & OL1 & & & & 7 & & & & \\
\hline 5 & WLX ICE & OL2 & & & & 7 & & 7 & & \\
\hline 6 & WLZ ICE & OL3 & & & & 7 & & 16 & & \\
\hline
\end{tabular}

\section*{Joint Loads and Enforced Displacements (BLC 1 : DL)}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Joint Label} & L,D,M & Direction & Magnitude[(lb, lb-ft), (in,rad), (lb* \(\left.{ }^{\wedge} 2 / 2 \mathrm{in}, \mathrm{lb}{ }^{*} \mathrm{~s}^{\wedge} 2^{*} \mathrm{i}\right)\) ] \\
\hline 1 & N14 & L & Y & -51.81 \\
\hline 2 & N16 & L & Y & -51.81 \\
\hline 3 & N13 & L & Y & -95.9 \\
\hline 4 & N15 & L & Y & -95.9 \\
\hline 5 & N35 & L & Y & -83.77 \\
\hline 6 & N36 & L & Y & -19 \\
\hline 7 & N37 & L & Y & -70.5 \\
\hline
\end{tabular}

Joint Loads and Enforced Displacements (BLC 2 : WLX)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Joint Label} & L,D,M & Direction & Magnitude[(lb, lb-ft), (in,rad), (lb*s^2/in, \(\left.\left.\mathrm{lb}{ }^{*} \mathrm{~s}^{\wedge} 2^{*} \mathrm{in}\right)\right]\) \\
\hline 1 & N14 & L & X & -66.81 \\
\hline 2 & N16 & L & X & -66.81 \\
\hline 3 & N13 & L & X & -315.622 \\
\hline 4 & N15 & L & X & -315.622 \\
\hline 5 & N35 & L & X & -83.77 \\
\hline 6 & N36 & L & X & -124.906 \\
\hline 7 & N37 & L & X & -125.905 \\
\hline
\end{tabular}

\section*{Joint Loads and Enforced Displacements (BLC 3 : WLZ)}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Joint Label} & L,D, & Direction & Magnitude[(lb, lb-ft), (in,rad), ( \(\left.\left.\mathrm{lb}{ }^{*} \mathrm{~s}^{\wedge} 2 / \mathrm{in}, \mathrm{lb}{ }^{*} \mathrm{~s}^{\wedge} 2^{*} \mathrm{in}\right)\right]\) \\
\hline 1 & N13 & L & Z & -116.5 \\
\hline 2 & N15 & L & Z & -116.5 \\
\hline 3 & N14 & L & Z & -34.97 \\
\hline 4 & N16 & L & Z & -34.97 \\
\hline
\end{tabular}

Joint Loads and Enforced Displacements (BLC 3 : WLZ)(Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Joint Labe} & L,D,M & Direction & Magnitude[(lb, lb-ft), (in,rad), (lb*s \(\left.{ }^{\wedge} 2 / \mathrm{in}, \mathrm{lb}{ }^{*} \mathrm{~s}^{\wedge} 2^{*} \mathrm{in}\right)\) ] \\
\hline 5 & N35 & L & Z & -62.528 \\
\hline 6 & N36 & L & Z & -45.286 \\
\hline 7 & N37 & L & Z & -45.286 \\
\hline
\end{tabular}

Joint Loads and Enforced Displacements (BLC 4 : DL ICE)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Joint Label} & L,D,M & Direction & Magnitude[(lb, lb-ft), (in,rad), (lb* \(\left.{ }^{\wedge} 2 / / \mathrm{in}, \mathrm{lb}{ }^{*} \mathrm{~s}^{\wedge} 2^{*} \mathrm{i}\right)\) ] \\
\hline 1 & N13 & L & Y & -203.615 \\
\hline 2 & N15 & L & Y & -203.615 \\
\hline 3 & N14 & L & Y & -53.645 \\
\hline 4 & N16 & L & Y & -53.645 \\
\hline 5 & N35 & L & Y & -107.57 \\
\hline 6 & N36 & L & Y & -102.35 \\
\hline 7 & N37 & L & Y & -156.39 \\
\hline
\end{tabular}

Joint Loads and Enforced Displacements (BLC 5 : WLX ICE)
\begin{tabular}{|c|c|c|c|c|}
\hline & Joint Lab & L,D,M & Direction & Magnitude[(lb, lb-ft), (in,rad), (lb* \(\left.{ }^{*} 2 / \mathrm{in}, \mathrm{lb}{ }^{*} \mathrm{~s}^{\wedge} 2^{*} \mathrm{i}\right)\) ] \\
\hline 1 & N14 & L & X & -45.708 \\
\hline 2 & N13 & L & X & -195.005 \\
\hline 3 & N15 & L & X & -195.005 \\
\hline 4 & N16 & L & X & -45.708 \\
\hline 5 & N35 & L & X & -53.48 \\
\hline 6 & N36 & L & X & -64.495 \\
\hline 7 & N37 & L & X & -64.495 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Joint Labe} & L,D,M & Direction & Magnitude[(lb, lb-ft), (in,rad), (lb* \(\left.\mathrm{s}^{\wedge} 2 / \mathrm{in}, \mathrm{lb}{ }^{*} \mathrm{~s}^{\wedge} 2^{*} \mathrm{i}\right)\) ] \\
\hline 1 & N14 & L & Z & -26.922 \\
\hline 2 & N16 & L & Z & -26.922 \\
\hline 3 & N13 & L & Z & -85.637 \\
\hline 4 & N15 & L & Z & -85.637 \\
\hline 5 & N36 & L & Z & -16.502 \\
\hline 6 & N37 & L & Z & -35.314 \\
\hline 7 & N35 & L & Z & -37.065 \\
\hline
\end{tabular}

\section*{Member Distributed Loads (BLC 2 : WLX)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Member Label & Direction & Start Magnitude[lb/ft... & End Magnitude[lb/ft,F.. & Start Location[in,\%] & End Location[in,\%] \\
\hline 1 & M16 & X & -4 & -4 & 0 & 0 \\
\hline 2 & M15 & X & -4 & -4 & 0 & 0 \\
\hline 3 & M21 & X & -4 & -4 & 0 & 0 \\
\hline 4 & M22 & X & -4 & -4 & 0 & 0 \\
\hline 5 & M12 & X & -4 & -4 & 0 & 0 \\
\hline 6 & M14 & X & -4 & -4 & 0 & 0 \\
\hline 7 & M9 & X & -4 & -4 & 0 & 0 \\
\hline 8 & M11 & X & -4 & -4 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Member Label & Direction & Start Magnitude[lb/tt.... & End Magnitude[lb/ft,F... & Start Location[in,\%] & End Location[in,\%] \\
\hline 1 & M2 & Z & -6.4 & -6.4 & 0 & 0 \\
\hline 2 & M6 & Z & -6.4 & -6.4 & 0 & 0 \\
\hline 3 & M3 & Z & -6.4 & -6.4 & 0 & 0 \\
\hline 4 & M4 & Z & -6.4 & -6.4 & 0 & 0 \\
\hline 5 & M5 & Z & -6.4 & -6.4 & 0 & 0 \\
\hline 6 & M1 & Z & -6.4 & -6.4 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Member Label & Direction & Start Magnitude[lb/ft,.. & End Magnitude \([1 \mathrm{l} / \mathrm{ft}, \mathrm{F}\). & Start Location[in,\%] & End Location[in,\%] \\
\hline 7 & M19 & Z & -4 & -4 & 0 & 0 \\
\hline 8 & M13 & Z & -4 & -4 & 0 & 0 \\
\hline 9 & M12 & Z & -4 & -4 & 0 & 0 \\
\hline 10 & M14 & Z & -4 & -4 & 0 & 0 \\
\hline 11 & M9 & Z & -4 & -4 & 0 & 0 \\
\hline 12 & M8 & Z & -4 & -4 & 0 & 0 \\
\hline 13 & M7 & Z & -4 & -4 & 0 & 0 \\
\hline 14 & M11 & Z & -4 & -4 & 0 & 0 \\
\hline 15 & M20 & Z & -4 & -4 & 0 & 0 \\
\hline 16 & M10 & Z & -4 & -4 & 0 & 0 \\
\hline
\end{tabular}

\section*{Member Distributed Loads (BLC 5 : WLX ICE)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\multicolumn{8}{c|}{ Member Label } \\
\hline 1 & M15 & Direction & \multicolumn{2}{c}{ Start Magnitude[lb/ft,...End Magnitude[lb/ft,F... Start Location[in,\%] } & End Location[in,\%] \\
\hline 2 & M21 & X & -2.5 & -2.5 & 0 & 0 \\
\hline 3 & M9 & X & -2.5 & -2.5 & 0 & 0 \\
\hline 4 & M11 & X & -2.5 & -2.5 & -2.5 & 0 & 0 \\
\hline 5 & M22 & X & -2.5 & -2.5 & 0 & 0 \\
\hline 6 & M17 & X & -2.5 & -2.5 & 0 & 0 \\
\hline 7 & M14 & X & -2.5 & -2.5 & 0 & 0 \\
\hline
\end{tabular}

Member Distributed Loads (BLC 6 : WLZ ICE)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Member Label & Direction & Start Magnitude[Ib/ft... & End Magnitude[lb/ft,F.. & Start Location[in,\%] & End Location[in,\%] \\
\hline 1 & M2 & Z & -4 & -4 & 0 & 0 \\
\hline 2 & M6 & Z & -4 & -4 & 0 & 0 \\
\hline 3 & M3 & Z & -4 & -4 & 0 & 0 \\
\hline 4 & M4 & Z & -4 & -4 & 0 & 0 \\
\hline 5 & M5 & Z & -4 & -4 & 0 & 0 \\
\hline 6 & M1 & Z & -4 & -4 & 0 & 0 \\
\hline 7 & M13 & Z & -2.5 & -2.5 & 0 & 0 \\
\hline 8 & M19 & Z & -2.5 & -2.5 & 0 & 0 \\
\hline 9 & M12 & Z & -2.5 & -2.5 & 0 & 0 \\
\hline 10 & M14 & Z & -2.5 & -2.5 & 0 & 0 \\
\hline 11 & M7 & Z & -2.5 & -2.5 & 0 & 0 \\
\hline 12 & M10 & Z & -2.5 & -2.5 & 0 & 0 \\
\hline 13 & M9 & Z & -2.5 & -2.5 & 0 & 0 \\
\hline 14 & M20 & Z & -2.5 & -2.5 & 0 & 0 \\
\hline 15 & M11 & Z & -2.5 & -2.5 & 0 & 0 \\
\hline 16 & M8 & Z & -2.5 & -2.5 & 0 & 0 \\
\hline
\end{tabular}

\section*{Load Combinations}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & A 1 & Yes & Y & DL & 1.2 & W & 1 & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline 2 & TIA 1 (b) & Yes & Y & DL & 1.2 & WLZ & 1 & & & & & & & & & & & & & & & & \\
\hline 3 & TIA 2 (a) & Yes & Y & DL & . 9 & W... & 1 & & & & & & & & & & & & & & & & \\
\hline 4 & TIA 2 (b) & Yes & Y & DL & . 9 & WLZ & 1 & & & & & & & & & & & & & & & & \\
\hline 5 & TIA 3 & Yes & Y & DL & 1.4 & & & & & & & & & & & & & & & & & & \\
\hline 6 & TIA 4 & Yes & Y & DL & 1.2 & LLS & 1.5 & & & & & & & & & & & & & & & & \\
\hline 7 & TIA 5 & Yes & Y & DL & 1.2 & IL & 1.5 & & & & & & & & & & & & & & & & \\
\hline 8 & Deflection 1 & Yes & Y & DL & 1 & & & & & & & & & & & & & & & & & & \\
\hline 9 & Deflection 2 & Yes & Y & LL & 1 & & & & & & & & & & & & & & & & & & \\
\hline 10 & Deflection 3 & Yes & Y & DL & 1 & LL & 1 & & & & & & & & & & & & & & & & \\
\hline 11 & IBC 16-1 & Yes & Y & DL & 1.4 & & & & & & & & & & & & & & & & & & \\
\hline 12 & IBC 16-2 (a) & Yes & Y & DL & 1.2 & LL & 1.6 & LLS & 1.6 & & & & & & & & & & & & & & \\
\hline
\end{tabular}

Company
Designer
Job Number

\section*{Load Combinations (Continued)}

Description Sol...PD...SR...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact..
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 13 & IBC 16-3 (... Yes & Y & DL & 1.2 & W... & . 5 & & & & & & & & & & & & & & & \\
\hline 14 & IBC 16-3 (... Yes & Y & DL & 1.2 & WLZ & . 5 & & & & & & & & & & & & & & & \\
\hline 15 & IBC 16-3 (... Yes & Y & DL & 1.2 & W... & -. 5 & & & & & & & & & & & & & & & \\
\hline 16 & IBC 16-3 (... Yes & Y & DL & 1.2 & WLZ & -. 5 & & & & & & & & & & & & & & & \\
\hline 17 & IBC 16-4 (... Yes & Y & DL & 1.2 & W... & 1 & LL & . 5 & LLS & 1 & & & & & & & & & & & \\
\hline 18 & IBC 16-4 (... Yes & Y & DL & 1.2 & WLZ & 1 & LL & . 5 & LLS & 1 & & & & & & & & & & & \\
\hline 19 & IBC 16-4 (... Yes & Y & DL & 1.2 & W... & -1 & LL & . 5 & LLS & 1 & & & & & & & & & & & \\
\hline 20 & IBC 16-4 (... Yes & Y & DL & 1.2 & WLZ & -1 & LL & . 5 & LLS & 1 & & & & & & & & & & & \\
\hline 21 & IBC 16-6 (a) Yes & Y & DL & . 9 & W... & 1 & & & & & & & & & & & & & & & \\
\hline 22 & IBC 16-6 (b) Yes & Y & DL & . 9 & WLZ & 1 & & & & & & & & & & & & & & & \\
\hline 23 & IBC 16-6 (c) Yes & Y & DL & . 9 & W... & -1 & & & & & & & & & & & & & & & \\
\hline 24 & IBC 16-6 (d) Yes & Y & DL & . 9 & WLZ & -1 & & & & & & & & & & & & & & & \\
\hline 25 & TIA 1 (a) Yes & Y & OL1 & 1.2 & OL2 & 1 & & & & & & & & & & & & & & & \\
\hline 26 & TIA 1 (b) Yes & Y & OL1 & 1.2 & OL3 & 1 & & & & & & & & & & & & & & & \\
\hline 27 & TIA 2 (a) Yes & Y & OL1 & . 9 & OL2 & 1 & & & & & & & & & & & & & & & \\
\hline 28 & TIA 2 (b) Yes & Y & OL1 & 9 & OL3 & 1 & & & & & & & & & & & & & & & \\
\hline 29 & TIA 3 Yes & Y & OL1 & 1.4 & & & & & & & & & & & & & & & & & \\
\hline 30 & TIA 4 Yes & Y & OL1 & 1.2 & LLS & 1.5 & & & & & & & & & & & & & & & \\
\hline 31 & TIA 5 Yes & Y & OL1 & 1.2 & IL & 1.5 & & & & & & & & & & & & & & & \\
\hline 32 & Deflection 1 Yes & Y & OL1 & 1 & & & & & & & & & & & & & & & & & \\
\hline 33 & Deflection 2 Yes & Y & LL & 1 & & & & & & & & & & & & & & & & & \\
\hline 34 & Deflection 3 Yes & Y & OL1 & 1 & LL & 1 & & & & & & & & & & & & & & & \\
\hline 35 & IBC 16-1 Yes & Y & OL1 & 1.4 & & & & & & & & & & & & & & & & & \\
\hline 36 & IBC 16-2 (a) Yes & Y & OL1 & 1.2 & LL & 1.6 & LLS & 1.6 & & & & & & & & & & & & & \\
\hline 37 & IBC 16-3 (... Yes & Y & OL1 & 1.2 & OL2 & . 5 & & & & & & & & & & & & & & & \\
\hline 38 & IBC 16-3 (... Yes & Y & OL1 & 1.2 & OL3 & . 5 & & & & & & & & & & & & & & & \\
\hline 39 & IBC 16-3 (... Yes & Y & OL1 & 1.2 & OL2 & -. 5 & & & & & & & & & & & & & & & \\
\hline 40 & IBC 16-3 (... Yes & Y & OL1 & 1.2 & OL3 & -. 5 & & & & & & & & & & & & & & & \\
\hline 41 & IBC 16-4 (... Yes & Y & OL1 & 1.2 & OL2 & 1 & LL & . 5 & LLS & 1 & & & & & & & & & & & \\
\hline 42 & IBC 16-4 (... Yes & Y & OL1 & 1.2 & OL3 & 1 & LL & . 5 & LLS & 1 & & & & & & & & & & & \\
\hline 43 & IBC 16-4 (... Yes & Y & OL1 & 1.2 & OL2 & -1 & LL & . 5 & LLS & 1 & & & & & & & & & & & \\
\hline 44 & IBC 16-4 (... Yes & Y & OL1 & 1.2 & OL3 & -1 & LL & . 5 & LLS & 1 & & & & & & & & & & & \\
\hline 45 & IBC 16-6 (a) Yes & Y & OL1 & . 9 & OL2 & 1 & & & & & & & & & & & & & & & \\
\hline 46 & IBC 16-6 (b) Yes & Y & OL1 & . 9 & OL3 & 1 & & & & & & & & & & & & & & & \\
\hline 47 & IBC 16-6 (c) Yes & Y & OL1 & . 9 & OL2 & -1 & & & & & & & & & & & & & & & \\
\hline 48 & IBC 16-6 (d) Yes & Y & OL1 & . 9 & OL3 & -1 & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Envelope Joint Reactions}


\section*{Envelope Joint Reactions (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Joint & & X [lib] & LC & Y [lb] & LC & Z [lb] & LC & MX [lb-ft] & LC & MY [lb-ft] & LC & MZ [lb-ft] & LC \\
\hline 17 & N47 & max & 122.366 & 21 & 112.56 & 19 & 72.666 & 19 & 0 & 48 & 0 & 48 & 0 & 48 \\
\hline 18 & & min & -158.964 & 19 & -54.232 & 3 & -35.624 & 3 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 19 & N48 & max & 122.366 & 21 & 112.56 & 19 & 35.624 & 21 & 0 & 48 & 0 & 48 & 0 & 48 \\
\hline 20 & & min & -158.964 & 19 & -54.232 & 3 & -72.666 & 19 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 21 & N61 & max & 120.525 & 18 & 44.816 & 18 & 50.367 & 18 & 0 & 48 & 0 & 48 & 0 & 48 \\
\hline 22 & & min & -98.347 & 24 & -9.19 & 24 & -28.074 & 24 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 23 & N60 & max & 120.525 & 20 & 44.816 & 20 & 28.074 & 22 & 0 & 48 & 0 & 48 & 0 & 48 \\
\hline 24 & & min & -98.347 & 4 & -9.19 & 4 & -50.367 & 20 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 25 & N55 & max & 82.755 & 22 & 44.816 & 20 & 28.074 & 22 & 0 & 48 & 0 & 48 & 0 & 48 \\
\hline 26 & & min & -141.316 & 20 & -9.19 & 4 & -50.367 & 20 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 27 & N54 & max & 82.755 & 24 & 44.816 & 18 & 50.367 & 18 & 0 & 48 & 0 & 48 & 0 & 48 \\
\hline 28 & & min & -141.316 & 2 & -9.19 & 24 & -28.074 & 24 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 29 & N69 & max & 71.234 & 19 & 41.406 & 19 & 4.496 & 21 & 0 & 48 & 0 & 48 & 0 & 48 \\
\hline 30 & & min & -13.916 & 3 & -6.343 & 3 & -26.416 & 19 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 31 & N67 & max & 71.234 & 19 & 41.406 & 19 & 26.416 & 19 & 0 & 48 & 0 & 48 & 0 & 48 \\
\hline 32 & & min & -13.916 & 3 & -6.343 & 3 & -4.496 & 3 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 33 & N18 & max & 18.585 & 45 & 337.766 & 19 & 103.971 & 18 & 0 & 48 & 0 & 48 & 0 & 48 \\
\hline 34 & & min & -18.842 & 43 & -169.812 & 3 & -103.967 & 20 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 35 & N19 & max & 18.296 & 17 & 359.215 & 17 & 103.974 & 18 & 0 & 48 & 0 & 48 & 0 & 48 \\
\hline 36 & & min & -18.108 & 23 & -198.212 & 23 & -103.967 & 24 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 37 & N63 & max & 5.799 & 21 & 41.406 & 19 & 26.416 & 19 & 0 & 48 & 0 & 48 & 0 & 48 \\
\hline 38 & & min & -26.735 & 19 & -6.343 & 3 & -4.496 & 3 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 39 & N62 & max & 5.799 & 21 & 41.406 & 19 & 4.496 & 21 & 0 & 48 & 0 & 48 & 0 & 48 \\
\hline 40 & & min & -26.735 & 19 & -6.343 & 3 & -26.416 & 19 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 41 & N25 & max & 0 & 48 & 2.619 & 19 & 1.323 & 18 & 0 & 48 & 0 & 48 & 0 & 48 \\
\hline 42 & & min & 0 & 1 & -1.133 & 25 & -1.323 & 24 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 43 & N28 & max & 0 & 48 & 2.509 & 17 & 1.324 & 18 & 0 & 48 & 0 & 48 & 0 & 48 \\
\hline 44 & & min & 0 & 1 & -1.023 & 43 & -1.323 & 24 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 45 & N27 & max & 0 & 48 & 2.648 & 17 & 1.322 & 22 & 0 & 48 & 0 & 48 & 0 & 48 \\
\hline 46 & & min & 0 & 1 & -. 736 & 23 & -1.324 & 20 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 47 & N26 & max & 0 & 48 & 2.56 & 19 & 1.323 & 22 & 0 & 48 & 0 & 48 & 0 & 48 \\
\hline 48 & & min & 0 & 1 & -. 75 & 27 & -1.325 & 20 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 49 & Totals: & max & 1226.966 & 21 & 1233.162 & 35 & 646.724 & 22 & & & & & & \\
\hline 50 & & min & -1226.967 & 19 & 0 & 9 & -646.724 & 24 & & & & & & \\
\hline
\end{tabular}

\section*{Envelope AISC 15th(360-16): LRFD Steel Code Checks}


THE W-T GROUP, LLC 2675 PRATUM AVENUE HOFFMAN ESTATES, IL 60192 PHONE: (224) 293-6444
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{3}{|l|}{ Project } & Job Ref. \\
ML42100A: SCHRAGER & & 1911530 T
\end{tabular}

\section*{CHECK FOR ANCHOR BOLT}

From original construction drawings by "Edge Consulting Engineers, Inc.", dated 12/11/2012.
Contractor to verify the below information prior to installation of proposed antennas.


TYP. INSTALL
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
WTVGoup \\
THE W-T GROUP, LLC 2675 PRATUM AVENUE hoffman estates, IL 60192 \\
PHONE: (224) 293-6444
\end{tabular}} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Project \\
ML42100A: SCHRAGER
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \hline \text { Job Ref. } \\
& \text { 1911530T }
\end{aligned}
\]} \\
\hline & \multicolumn{4}{|l|}{\begin{tabular}{l}
Section \\
CHECK FOR WALL MOUNT ANCHOR BOLTS
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Sheet no./rev. } \\
& 38
\end{aligned}
\]} \\
\hline & \begin{tabular}{l}
Calc. by \\
CJS
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { Date } \\
07 / 08 / 2020
\end{array}
\] & Chk'd by & Date & App'd by & Date \\
\hline
\end{tabular}

From Commscope/Andrew Assembly Drawings, dated 02/09/2005


\section*{WTV Group}

THE W-T GROUP, LLC 2675 PRATUM AVENUE HOFFMAN ESTATES, IL 60192 PHONE: (224) 293-6444
(30) Envelope Joint Reactions
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{3}{|l|}{ Project } & \multicolumn{1}{|l|}{\begin{tabular}{l} 
Job Ref. \\
ML42100A: SCHRAGER
\end{tabular}} & 1911530 T
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline\(\square\) & 回 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Joint & & X [lb] & L. & Y [lb] & L... & Z [lb] & L... & MX [lb-ft] & L... & MY [lb-ft] & L. & MZ [lb-ft] & L. & \\
\hline 1 & N45 & max & 235.884 & 18 & 112.777 & 17 & 90.592 & 18 & 0 & 48 & 0 & 48 & 0 & 48 & - \\
\hline 2 & & min & -198.856 & 24 & -54.03 & 23 & -53.368 & 24 & 0 & 1 & 0 & 1 & 0 & 1 & \\
\hline 3 & N44 & max & 235.884 & 20 & 112.777 & 17 & 53.368 & 22 & 0 & 48 & 0 & 48 & 0 & 48 & \\
\hline 4 & & min & -198.856 & 4 & -54.03 & 23 & -90.592 & 20 & 0 & 1 & 0 & 1 & 0 & 1 & \\
\hline 5 & N17 & max & 223.319 & 21 & 359.447 & 19 & 14.076 & 22 & 0 & 48 & 0 & 48 & 0 & 48 & \\
\hline 6 & & min & -223.511 & 19 & -197.813 & 3 & -14.078 & 24 & 0 & 1 & 0 & 1 & 0 & 1 & \\
\hline
\end{tabular}

\section*{From Risa 3D Analysis}

Tension
Shear, Vy
Shear, Vz
Resultant Shear
\[
\begin{aligned}
& 235.884 \mathrm{lbs} \\
& 112.777 \mathrm{lbs} \\
& 90.592 \mathrm{lbs} \\
& 114.66 \mathrm{lbs}
\end{aligned}
\]

Based on similar expansion anchors by Hilti:
Bolt Dia
1/2"
No. of Bolts
4
Effective Embedment Depth 2"

Table 16 - Hilti KWIK Bolt TZ stainless steel design strength with concrete / pullout failure in cracked concrete \({ }^{12,3,4,5}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Nominal & & & \multicolumn{4}{|c|}{Tension - \(\dagger \mathrm{Na}_{\text {a }}\)} & \multicolumn{4}{|c|}{Shear - \(\phi \mathrm{V}_{\mathrm{n}}\)} \\
\hline diameter in. & \begin{tabular}{l}
embed. \\
in. (mm)
\end{tabular} & \begin{tabular}{l}
embed. \\
in. (mm)
\end{tabular} & \[
\begin{gathered}
f_{\mathrm{c}}=2,500 \mathrm{psi} \\
\mathrm{lb}(\mathrm{kN})
\end{gathered}
\] & \[
\begin{gathered}
f_{=}^{\prime}=3,000 \mathrm{psi} \\
\mathrm{lb}(\mathrm{kN})
\end{gathered}
\] & \[
\begin{gathered}
f_{\mathrm{c}}^{\prime}=4,000 \mathrm{psi} \\
\mathrm{lb}(\mathrm{kN})
\end{gathered}
\] & \[
\begin{gathered}
f_{\mathrm{e}}^{\prime}=6,000 \mathrm{psi} \\
\mathrm{lb}(\mathrm{kN})
\end{gathered}
\] & \[
\begin{gathered}
f_{\mathrm{E}}^{\prime}=2,500 \mathrm{psi} \\
\mathrm{lb}(\mathrm{kN})
\end{gathered}
\] & \[
\begin{gathered}
f^{\prime}=3,000 \mathrm{psi} \\
\mathrm{lb}(\mathrm{kN})
\end{gathered}
\] & \[
\begin{gathered}
f_{\mathrm{c}}^{\prime}=4,000 \mathrm{psi} \\
\mathrm{lb}(\mathrm{kN})
\end{gathered}
\] & \[
\begin{gathered}
f_{c}^{\prime}=6,000 \mathrm{psi} \\
\mathrm{lb}(\mathrm{kN})
\end{gathered}
\] \\
\hline 3/8 & \[
\begin{gathered}
2 \\
(51) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 2-5 / 16 \\
(59) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 1,520 \\
& (6.8) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1,665 \\
& (7.4) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1,925 \\
& (8.6)
\end{aligned}
\] & \[
\begin{aligned}
& 2,355 \\
& (10.5)
\end{aligned}
\] & \[
\begin{aligned}
& 1,685 \\
& (7.5)
\end{aligned}
\] & \[
\begin{gathered}
1,845 \\
(8.2) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2,130 \\
(9.5) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 2,605 \\
& (11.6)
\end{aligned}
\] \\
\hline & \[
\begin{gathered}
2 \\
(51)
\end{gathered}
\] & \[
\begin{gathered}
2-3 / 8 \\
(60)
\end{gathered}
\] & \[
\begin{gathered}
1,750 \\
(7.8)
\end{gathered}
\] & \[
\begin{gathered}
1,915 \\
(8.5)
\end{gathered}
\] & \[
\begin{gathered}
2,210 \\
(9.8)
\end{gathered}
\] & \[
\begin{aligned}
& 2.710 \\
& (12.1)
\end{aligned}
\] & \[
\begin{aligned}
& 2,375 \\
& (10.6)
\end{aligned}
\] & \[
\begin{aligned}
& 2,605 \\
& (11.6)
\end{aligned}
\] & \[
\begin{aligned}
& 3,005 \\
& (13.4)
\end{aligned}
\] & \[
\begin{aligned}
& 3,680 \\
& (16.4)
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
\[
3-1 / 4
\] \\
(83)
\end{tabular} & \[
\begin{gathered}
3-5 / 8 \\
(91)
\end{gathered}
\] & \[
\begin{aligned}
& 3,235 \\
& (14.4)
\end{aligned}
\] & \[
\begin{aligned}
& 3,545 \\
& (15.8)
\end{aligned}
\] & \[
\begin{aligned}
& 4,095 \\
& (18.2)
\end{aligned}
\] & \[
\begin{aligned}
& 5,015 \\
& (22.3)
\end{aligned}
\] & \[
\begin{aligned}
& 6,970 \\
& (31.0)
\end{aligned}
\] & \[
\begin{aligned}
& 7,640 \\
& (34.0)
\end{aligned}
\] & \[
\begin{aligned}
& 8,820 \\
& (39.2)
\end{aligned}
\] & \[
\begin{gathered}
10,800 \\
(48.0)
\end{gathered}
\] \\
\hline
\end{tabular}

Allowable Tension
1,750 lbs
Allowable Shear
2,375 lbs

Tension at Each Bolts
235.884 lbs

Shear at Each Bolts
114.66 lbs

Combined Tension and Shear
0.183
\(<1.0\)
O.K.

\section*{EXHIBITS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{Structural Analysis Worksheet} \\
\hline \multicolumn{14}{|c|}{Site Information} \\
\hline \multicolumn{5}{|l|}{Project Manager: \(\square\) Sergio Contreras} & \multicolumn{5}{|c|}{T\# T190057} & & & & \\
\hline \multicolumn{14}{|l|}{File names to be used for tower info (tower steel/bolt/fdn. info):} \\
\hline \multicolumn{14}{|l|}{*Existing carrier loading should reflect all leased loading.} \\
\hline \multicolumn{14}{|c|}{Loading information} \\
\hline Item & Carrier & \begin{tabular}{l}
Elevation \\
(Ft)
\end{tabular} & Status (Proposed, Existing, Future) & Qty & Antenna/TMA/RRU Model & Height & Width & Depth & Weight & Mount Type & \[
\begin{aligned}
& \text { Qty } \\
& \text { Coax }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Coax } \\
& \text { Size }
\end{aligned}
\] & \begin{tabular}{|c} 
Coax \\
Location* \\
(inside, \\
outside, \\
face, \\
stacked?) \\
\hline
\end{tabular} \\
\hline 1 & T-Mobile & 51'-0" & Existing & \[
\stackrel{3}{\text { per sector) }} \text { (1) }
\] & covp & 20.38 & 16.08 & 5.83 & 19 & Radio Frame & 3 & HYBRID & \\
\hline 2 & T-Mobile & 51'-0" & Proposed & \[
\stackrel{3}{\text { per sector) }}{ }^{(1}
\] & AHFIG & 27.3 & 12.1 & 5.2 & 70.5 & Radio Frame & & & \\
\hline 3 & T-Mobile & 51'-0" & Proposed & \[
\stackrel{3}{\text { per sector) }}{ }^{(1)}
\] & AHLOA & 22.05 & 12.13 & 7.44 & 83.77 & Radio Frame & & & \\
\hline 4 & T-Mobile & +/-54'-0" & Proposed & \[
\begin{gathered}
3 \\
\text { per sector) }
\end{gathered}{ }^{(1}
\] & AAHF ANTENNA & 25.6 & 19.7 & 10.3 & 103.6 & Wall Mount & & & \\
\hline 5 & T-Mobile & 51'-0" & Proposed & \[
\stackrel{3}{\text { per sector) }}{ }^{(1)}
\] & COMMSCOPE FFHH-65C-R3 & 95.9 & 25.2 & 9.3 & 127.6 & Wall Mount & & & \\
\hline
\end{tabular}





\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} &  &  &  &  \\
\hline & & & & \\
\hline
\end{tabular}
























EXISTING BUILDING ELEVATION






A


 M
0
0
0
0
0
0
0
 G. ELECTRICAL MEALLUC TUBING SHALL BE ULLL LABEL FITING SHALL BE GLAND RING COMPRESSION TYPE H. CORNG THROUGH HLOORS AND WALLS SHALL NOT BE DONE WTHOUT FINAL APPROVAL OF BULDING OWNER OR
OWER RRPEEENATINE.
i. CORIN SHALL NOT BE PERFORMED DURING WORKING HOURS UNLESS OTHERWSE APPROVED BY THE OWNER.道
J. SUBMITAL OF BID INDICALES CONTRACTOR II FAMLLAR WTH ALL JOB STIE CONDIIIONS AND WORK TO BE PERFORMED










\(\frac{1.0}{1.0} 1\) CLaNU
B.


 D. CONITACIOR SHALL WASH AND WAX FLOOR PRIOR TO FNAL ACCEFTANCE FROM SDM. WAX SHALL BE THE
ANI-STATC TYPE.
1.12 RELATED DOCUMENIS AND COORDINATON






c. ALL SHOP DRAWNGS TO Be REMSED, CHECKED AND CORRECIED BY GENERAL CONTRACTOR PRIOR TO SUBMITAL
114 Reoovecr AD Susasturions

 1.15 compliace


B.




\footnotetext{

}
 Humin








 NHM Nown



Im coveres
\(\wedge\) ~
 )
C.


Consulting Engineers, Inc.

\title{
STRUCTURAL ANALYSIS REPORT
}

\section*{CARRIER: \\ T- . Mobile*}

\title{
ROOFTOP SITE MODERNIZATION SCHRAGER RT [ML42100A] MILWAUKEE, WISCONSIN
}

\section*{EDGE PROJECT NUMBER: \\ 7465}

JUNE 2012

\section*{STRUCTURAL ANALYSIS REPDRT}

\section*{Project Information:}

Schrager RT
2915 N. Sherman Blva.
Milwaukee, WI

\section*{Client Project Number:}

\section*{Client:}

\section*{Carrier:}

\section*{Consultant:}

Edge Consulting Engineers
624 Water Street
Prairie du Sac, Wisconsin 53578
Contact: David Lyshek, P.E.
Phone: (608) 644-14497465

\section*{Date:}

June 2012


\section*{TABLE OF CONTENTS}
SECTION 1 EXECUTIVE SUMMARY ..... 1
SECTION 2 INTRODUCTION ..... 2
2.1 PROJECT OVERVIEW ..... 2
2.2 PURPOSE OF REPORT ..... 2
2.3 SCOPE OF SERVICES ..... 2
SECTION 3 ANALYSIS ..... 3
\(3.1 \quad\) BACKGROUND \& SCOPE OF WORK ..... 3
3.2 ANALYSIS CRITERIA ..... 3
SECTION 4 RESULTS ..... 4
4.1 ANTENNA MOUNTS ..... 4
4.2 EQUIPMENT SPACE AND ROOFTOP STRUCTURE ..... 4
4.3 RECOMMENDATIONS ..... 5
SECTION 5 LIMITATIONS AND RESTRICTIONS ..... 6

\section*{APPENDICES}

Appendix A: ASCE 7-05 Definitions
Appendix B: Structural Calculations
Appendix C: Equipment Details/Cut-Sheets

\title{
SECTION 1 EXECUTIVE SUMMARY
}

\author{
Site Name: Schrager RT \\ Site Location: 2915 N. Sherman Blvd. Milwaukee, Wisconsin \\ Structure Type: Rooftop \\ Project Description: T-Mobile Site Modernization
}

We have completed a structural analysis to address the T-Mobile site modernization goals. TMobile currently occupies the structure with (3) sectors of antennas. Each sector of antennas will be replaced by (3) Andrew TMBXX-6517-A2M antennas. Each sector of antennas will be accompanied by remote radio units (RRUs) and supported by a COVP. The site modernization will also include the addition of a site support cabinet (SSC) and related system modules for the RRUs at the radio cabinet end.

Our analysis was performed in accordance with the current Wisconsin Commercial Building Code (IBC 2009), and all of its referenced standards.

The existing antenna supports and equipment space were analyzed for proposed antenna loading and existing and proposed equipment loading.

The analysis shows that the equipment room and the building in question are structurally adequate to support the proposed change in loading. Likewise, the existing antenna mounts and proposed RRU + COVP mounts are structurally adequate to support the proposed loading.

Please refer to the report which follows this summary for further information. Feel free to contact us if you have any questions or concerns.

\title{
SECTION 2 \\ INTRODUCTION
}

\subsection*{2.1 PROJECT OVERVIEW}

This report summarizes the results of a structural analysis conducted by Edge Consulting Engineers (Edge) for SureSite who is managing a site modernization project for T-Mobile related to a rooftop site which they currently occupy.

\subsection*{2.2 PURPOSE OF REPORT}

The purpose of this report is to assess the adequacy of the existing rooftop structure, equipment room, and antenna mounts to support the proposed antennas and equipment cabinet loading while considering appropriate loading criteria. This assessment was completed using background information provided by the client/local municipality and/or obtained in the field (where noted) and in conformance with current applicable codes, client directed protocols, and the judgment of the structural engineer.

\subsection*{2.3 SCOPE OF SERVICES}

The scope of services for this project included structural analysis of the building and equipment area, and antenna supports in accordance with client supplied information.

This report summarizes the structural analysis results.

\section*{SECTION 3 \\ ANALYSIS}

\subsection*{3.1 BACKGROUND \& SCOPE OF WORK}

T-Mobile currently occupies the subject structure with telecommunications equipment. Site modernization through antenna swap-outs the addition of remote radio units (RRUs) and COVP and the installation of a site support cabinet (SSC) and system modules,

The proposed modernization shall occur on the existing T-Mobile equipment and antennas installed within the building loft and rooftop level.

The following resources were utilized in preparation of this analysis:
- T-Mobile Construction Drawings (10/12/2005) and T-Mobile Structural Analysis (10/12/2005).
- Existing rooftop layout of equipment and antennas per Edge site visit dated 5/31/2012
- Proposed antenna and equipment cabinet loading.
- T-Mobile Radio Frequency Data Sheet \& SSC equipment specifications.

The structure was designed as a church with a second story balcony, loft, and elevated dome. The building appears to date back to 1922 and is currently used for antique storage and resale. The building primarily consists of masonry and reinforced concrete. The existing T-Mobile equipment room is on the second floor organ room loft. The antennas are installed on the vertical wall of the dome at the rooftop level. This configuration gives an antenna centerline height of approximately \(60^{\prime}\) above ground level.

\subsection*{3.2 ANALYSIS CRITERIA}

This analysis was performed in accordance with the current Wisconsin Commercial Building Code (IBC 2009).

This analysis utilized the following Exposure Criteria and Occupancy Category.
```

Exposure Criteria: C
Occupancy Category: II
Wind speed: 90 mph

```

These criteria were selected based on the location and use of the building in question. Should the client have reason for selection of other criteria, they must contact the engineer.

Definitions of the different categories and criteria were taken from the ASCE 7-05 standard and are provided in Appendix A.

\section*{SECTION 4 \\ RESULTS}

\subsection*{4.1 ANTENNA MOUNTS}

T-Mobile maintains (3) sectors of antennas on the rooftop of the structure. Each sector of antennas consists of (2) existing antennas. The existing antennas are proposed to be replaced with the (3) Andrew TMBXX-6517-A2M antennas. The additional antenna will be supported adjacent to the existing and secured and anchored to the building exterior to match the existing. The proposed mounts, like the existing, will be anchored through the brick façade and into the underlying concrete wall. A manufactured mount prescribed for such applications shall be used.

The antennas will also be supplemented by (1) COVP and (3) RRUs. Antennas and supplementary equipment shall be supported by the existing mounts. The RRUs + COVP are designed to be supported on a custom fabricated frame to be located adjacent to each of the sectors behind the parapet wall. The weight of the frame and supported equipment was determined to adequately anchor its self in place. The resultant superimposed roof load (16.3 psf) was calculated. Surplus roof capacity between 20 to 30 psf is anticipated, which is well above the anticipated loads at each of these locations. Therefore, the mounts and ballast as prescribed are adequate. See Appendix B for supporting calculations to this analysis.

\subsection*{4.2 EQUIPMENT SPACE AND RODFTOP STRUCTURE}

The proposed Site Support Cabinet (SSC) and system modules are to be located in a section of the mechanical room penthouse prescribed for T-Mobile's use. The summary of T-Mobile loading conditions with respect to the existing conditions, original T-Mobile design, and as proposed under site modernization is as follows:
\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{l} 
Equipment Type \& \\
Location
\end{tabular} & \begin{tabular}{c} 
Existing \\
Conditions
\end{tabular} & \begin{tabular}{c} 
Original \\
Design
\end{tabular} & \begin{tabular}{c} 
Proposed \\
Conditions
\end{tabular} \\
\hline BTS & \begin{tabular}{c}
\((1)\) BTS \\
\((1200 \mathrm{lbs})\)
\end{tabular} & \begin{tabular}{c}
\((2)\) BTS \\
\((2400 \mathrm{lbs})\)
\end{tabular} & \begin{tabular}{c}
\((1)\) BTS \\
\((1200 \mathrm{lbs})\)
\end{tabular} \\
\hline Battery Backup Unit & \((0)\) & \((0)\) & \((0)\) \\
\hline Flexi & \begin{tabular}{c} 
Flexi \\
\((300 \mathrm{lbs})\)
\end{tabular} & \((0)\) & (0) Wall mount \\
\hline \begin{tabular}{l} 
Site Support Cabinet \& \\
System Modules
\end{tabular} & \((0)\) & \((0)\) & \begin{tabular}{c} 
(1) SSC \& (4) System \\
Modules (1400 lbs)
\end{tabular} \\
\hline TOTAL & 1500 Lbs & 2400 lbs & 2600 lbs \\
\hline
\end{tabular}

Equipment items such as coax, jumper cables, power panels, junction boxes, and other ancillary support equipment not deemed significant to the structural analysis were excluded from the summary table above.

The existing and proposed equipment shall be located in a second floor loft room. The equipment area is adjacent to an exterior wall and shall sit on the reinforced concrete floor. The previous field inspection revealed that the floor of the loft consists of a reinforced concrete slab and beam structure. The slab was determined to be 5 " thick. The original architectural plans identified this area as the Choir Organ room. The total weight of the proposed equipment
configuration is approximately \(2,600 \mathrm{lbs}\). T-Mobile leases an area of 120 square feet (sqft) within this room. The resultant uniform load over T-Mobile's designated area is approximately 21.7 psf . Based on this, the proposed equipment is considered to be within the reinforced concrete floor's loading capacity. Therefore, the existing equipment room floor and building superstructure are adequate.

\subsection*{4.3 RECOMMENDATIONS}

Based on the results of this analysis, it is our professional opinion that the existing antenna mounts, equipment space, and rooftop structure are adequate as analyzed under the proposed change in loading.

If the proposed loading is altered from that analyzed, this report shall be deemed obsolete and further analysis will be required.

\section*{SECTION 5}

\section*{LIMITATIONS AND RESTRICTIONS}
1. This report was prepared in accordance with generally accepted structural engineering practices common to the industry and makes no other warranties, either expressed or implied, as to the professional advice provided under the terms of the agreement between Engineer and Client. This report has not been prepared for uses or parties other than those specifically named, or for uses or applications other than those enumerated herein. The report may contain insufficient or inaccurate information for other purposes, applications, and/or other uses.
2. This report is intended for the use of the client, and cannot be utilized or relied upon by other parties without the written consent of Edge Consulting Engineers.
3. Edge consulting Engineers is not responsible for any, and all, modifications completed prior to, or hereafter, which Edge Consulting Engineers was not, or will not, be directly involved.
4. The conclusions and recommendations contained within this report are based upon the supplied and attained information as described within the report. If it is known, or becomes known, that any item(s) are in conflict with what is described within this document, this report should be considered void and Edge Consulting Engineers should be contacted immediately.
5. Edge Consulting Engineers disclaims all liability for any information, conclusion, or recommendation that is not expressly stated or represented within this report.
6. Edge Consulting Engineers shall not be liable for any incidental, consequential, indirect, special or punitive damages arising out of any claim associated with the use of this report.
7. The scope of worked performed for this analysis is limited to the items in which we were furnished complete and accurate information.
8. This analysis was performed under the assumption that all structural elements are in like new condition, free from rust and other deterioration. It is also assumed that everything was properly installed per construction documents. Edge Consulting Engineers cannot account for, nor be held responsible, if elements are deteriorated, damaged, and/or missing.
9. This analysis was performed based upon the antenna and equipment loading and placement as described within this report. Any alterations to the described loading or placement will require re-analysis, and the findings contained in this report are not valid.
10. The loading utilized for this analysis is based on information provided by the client, and readily available manufacturer/vendor information (antenna and mount projected areas, weight and shape factors). However, if the described loading criteria and design assumptions within this report are not accurate, are altered, or changed in any form, this analysis shall be considered void and an additional analysis must be performed.
11. It is the responsibility of the client and the building owner to thoroughly review the existing and proposed loading, and bring any discrepancy to the attention of Edge Consulting Engineers.
12. This analysis does not evaluate manufacturer specifications for equipment anchorage or attachment. This includes the specification for the system modules to the top of the SSC which is a design undertaking between the SSC manufacturer and T-Mobile.

\section*{APPENDIX A}

\section*{ASCE 7-05 DEFINITIONS}

\title{
ANALYSIS CRITERIA DEFINITIONS
}

\section*{Exposure Criteria:}

Exposure B
Urban and suburban areas, wooded areas, or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger. Use of this exposure shall be limited to those areas for which terrain representative of Exposure B surrounds the structure in all directions for a distance of at least \(2,630 \mathrm{ft}\). or ten times the height of the structure, whichever is greater.

\section*{Exposure C}

Open terrain with scattered obstructions having heights generally less than 30 ft. This category includes flat, open country, grasslands and shorelines in hurricane prone regions.

\section*{Exposure D}

Flat, unobstructed shorelines exposed to wind flowing over open water (excluding shorelines in hurricane prone regions) for a distance of at least 1 mile. Shorelines in Exposure D include inland waterways, lakes and non-hurricane coastal areas. Exposure D extends inland a distance of 660 ft . or ten times the height of the structure, whichever is greater. Smooth mud flats, salt flats and other similar terrain shall be considered as Exposure D.

\section*{Occupancy Categories:}

\section*{Category I}

Buildings and other structures that represent a low hazard to human life in the event of failure, including, but not limited to:
- Agricultural facilities
- Certain temporary facilities
- Minor storage facilities

\section*{Category II}

All buildings and other structures except those listed in Occupancy Categories I, III, and IV

\section*{Category III}

Buildings and other structures that represent a substantial hazard to human life I the event of failure, including, but not limited to:
- Buildings and other structures where more than 300 people congregate in one area
- Buildings and other structures with daycare facilities with a capacity greater than 150
- Buildings and other structures with elementary school or secondary school facilities with a capacity greater than 250
- Buildings and other structures with a capacity greater than 500 for colleges or adult education facilities
- Health care facilities with a capacity of 50 or more resident patients, but not having surgery or emergency treatment facilities
- Jails and detention facilities

Buildings and other structures, not included in Occupancy Category IV, with potential to cause a substantial economic impact and/or mass disruption of day-to-day civilian life in the event of failure, including, but not limited to:
- Power generating stations \({ }^{\text {a }}\)
- Water treatment facilities
- Sewage treatment facilities
- Telecommunication centers

Buildings and other structures not included in Occupancy Category IV (including, but not limited to, facilities that manufacture, process, handle, store, use, or dispose of such substances as hazardous fuels, hazardous chemicals, hazardous waste, or explosives) containing sufficient quantities of toxic or explosive substances to be dangerous to the public if released.

Buildings and other structures containing toxic or explosive substances shall be eligible for classification as Occupancy Category II structures if it can be demonstrated to the satisfaction of the authority having jurisdiction by a hazard assessment as described in Section 1.5.2 that a release of the toxic or explosive substances does not pose a threat to the public.

\section*{Category IV}

Buildings and other structures designated as essential facilities, including, but not limited to:
- Hospitals and other health care facilities having surgery or emergency treatment facilities
- Fire, rescue, ambulance, and police stations and emergency vehicle garages
- Designated earthquake, hurricane, or other emergency shelters
- Designated emergency preparedness, communication, and operation centers and other facilities required for emergency response
- Power generating stations and other public utility facilities required in an emergency
- Ancillary structures (including, but not limited to, communication towers, fuel storage tanks, cooling towers, electrical substation structures, fire water storage tanks or other structures housing or supporting water, or other fire suppression material or equipment) required for operation of Occupancy Category IV structures during an emergency
- Aviation control towers, air traffic control centers, and emergency aircraft hangars
- Water storage facilities and pump structures required to maintain water pressure for fire suppression
- Buildings and other structures having critical national defense functions

Buildings and other structures (including, but not limited to, facilities that manufacture, process, handle, store, use, or dispose of such substances as hazardous chemicals, or hazardous waste) containing highly toxic substances where the quantity of the material exceeds a threshold quantity established by the authority having jurisdiction.

Buildings and other structures containing highly toxic substances shall be eligible for classification as Occupancy Category II structures if it can be demonstrated to the satisfaction of the authority having jurisdiction by a hazard assessment as described in Section 1.5.2 that a release of the highly toxic substances does not pose a threat to the public. This reduced classification shall not be permitted if the buildings or other structures also funcition as essential facilities.
\({ }^{\text {a }}\) Cogeneration power plants that do not supply power on the national grid shall be designated Occupancy Category II.

\section*{APPENDIX B}

\section*{STRUCTURAL CALCULATIONS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Consulting Engineers, Inc. \\
624 Water Street \\
Prairie du Sac, WI 53578 \\
608.644.1449 phone 262.364.3000 fax
\end{tabular}} & \multicolumn{7}{|c|}{strustural calculations} \\
\hline & \multicolumn{7}{|c|}{Wind Load Calculations} \\
\hline Client: T-Mobile & Site N & e: & Schrager RT & \begin{tabular}{l}
Client \\
Site \#:
\end{tabular} & ML42100A & Edge Site \#: & 7465 \\
\hline Calculated By: DCL & Date: & 6/1 & & Checked & & Date: & \\
\hline
\end{tabular}




\section*{APPENDIX C}

\section*{EQUIPMENT SPECIFICATIONS \& CUT SHEETS}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
ANDREW. \\
A CommScope Company
\end{tabular} & \begin{tabular}{l}
TMBXX-6517-R2M \\
DualPol \({ }^{\circledR}\), Quad Panel Antenna
\end{tabular} & \begin{tabular}{l}
DualPol \({ }^{\circledR}\) \\
Teletilt \({ }^{\circledR}\)
\end{tabular} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
- Patented cross dipole and feed system \\
- Fully compatible with Andrew Teletilt \({ }^{\ominus}\) remote \\
- Rugged, reliable design with excellent PIM suppression control antenna system \\
- Includes factory installed AISG 2.0 RET actuator
\end{tabular}} \\
\hline
\end{tabular}
```


[^0]: CJ Starke, E.I.T. Project Engineer, Structural Engineering

