STRUCTURAL WIND CALCULATIONS

For

CAFÉ HOLLANDER Milwaukee, WI

For

The Kubala Washatko Architects

Alan T. Rentmeester, PE

SPIRE ENGINEERING, INC.

305 N Plankinton Ave. Suite 101 Milwaukee, WI 53203 (414) 278-9200

April 10, 2024

Wind Calculation Summary

WIND LOAD INFORMATION:

BASIC WIND SPEED		115 MPH	
RISK CATEGORY		II	
WIND EXPOSURE		В	
INTERNAL PRESSURE COEFFICIENTS		± 0.18	
COMPONENTS AND CLADDING (STRENG	TH DESIGN/ULT	IMATE LOADS)
WIDTH OF PRESSURE COEFFICIENT ZO	NE (a)	5.0 ft	
TRIBUTARY WIND LOAD AREAS:	<u>10 ft</u> ²	<u>50 ft</u> ²	<u>100 ft</u> ²
WALLS:			
ZONE 4	-23.6 psf	-21.3 psf	-20.4 psf
ZONE 5	-29.0 psf	-24.6 psf	-22.6 psf
POSITIVE PRESSURE ALL ZONES	21.8 psf	19.5 psf	18.6 psf

JOB NO.		SHEET NO.	
CALCULATED BY Sp	ire Engineering	DATE	
CHECKED BY		DATE	

www.struware.com

Code Search

Code: Wisconsin Building Code 2018

Occupancy:

Occupancy Group = B Business

Risk Category & Importance Factors:

Risk Category =	П
Wind factor =	1.00
Snow factor =	1.00
Seismic factor =	1.00

Type of Construction:

Fire Rating:

•	Roof =	0.0 hr
	Floor =	0.0 hr

Building Geometry:

2 0.0 deg
ť
ť
ť
ť
ť

Live Loads:

<u>Roof</u>	0 to 200 sf: 200 to 600 sf: over 600 sf:	20 psf 24 - 0.02Are 12 psf	ea, but not less t	han 12 psf
Awning	s and canopys -	non fabric	20 psf	
Floor:			·	
Typical	Floor		40 psf	
Partitior	าร		15 psf	
Stairs a	nd exit ways		100 psf	
Public r	ooms & corridors	s serving ther	100 psf	

Spire Engineering, Inc.

305 N. Plankinton, Suite 101 Milwaukee, WI 53203 (414) 278 - 9200

JOB TITLE Café Hollander Wind Loads

JOB NO.	SHEET NO.	
CALCULATED BY Spire Engineering	DATE	
CHECKED BY	DATE	

Win	<u>d Loads :</u>	ASCE 7 - 10				
	Ultimate Wind Speed Nominal Wind Speed Risk Category Exposure Category Enclosure Classif. Internal pressure Directionality (Kd) Kh case 1 Kh case 2	115 mph 89.1 mph II B Enclosed Building +/-0.18 0.85 0.701 0.701				
	Type of roof	Monoslope]
	Topographic Factor (K	(zt)			(z)	1
	Topography	Flat		~ f - j		
	Hill Height (H)	0.0 ft	H< 60ft;exp B	V(-)		E .
	Half Hill Length (Lh)	0.0 ft	∴ Kzt=1.0	V(Z)	x(upwind)	∃x(downwind)
	Actual H/Lh =	0.00			60,000	H/2
	Use H/Lh =	0.00			a lb	H H
	Modified Lh =	0.0 ft				H72
	From top of crest: x =	50.0 ft				
	Bldg up/down wind?	downwind		E	<u>SCARPMENT</u>	
	H/Lh= 0.00	K ₁ = 0.000				
	x/Lh = 0.00	$K_2 = 0.000$			V(z)	
	z/Lh = 0.00	K ₃ = 1.000		Z 📥		Sneed-up
	At Mean Roof Ht:			V(z)		
	Kzt =	(1+K ₁ K ₂ K ₃)^2 = 1.00			x(upwind)	x(downwind)
					Lh.	H/2 H
				and the second sec	2 W 3 7	101816

2D RIDGE or 3D AXISYMMETRICAL HILL

<u>Gust</u>	Effect	Factor
h	=	30.0 ft
В	=	50.0 ft
/z (0.6h)	=	30.0 ft

Flexible structure if natural frequency	y < 1 Hz (T > 1 second).
If building h/B>4 then may be flexibl	e and should be investigated.
h/B = 0.60	Rigid structure (low rise bldg)

G =

0.85 Using rigid structure default

Rigio	<u>l Structure</u>	Flexible or Dyr	namically Se	ensitive St	tructure		
ē =	0.33	34 rcy (η ₁) =	0.0 Hz				
ł =	320 ft	Damping ratio (β) =	0				
z _{min} =	30 ft	/b =	0.45				
c =	0.30	/α =	0.25				
g _Q , g _v =	3.4	Vz =	74.1				
$L_z =$	310.0 ft	N ₁ =	0.00				
Q =	0.89	R _n =	0.000				
$I_z =$	0.30	R _h =	28.282	η =	0.000	h =	30.0 ft
G =	0.86 use G = 0.85	R _B =	28.282	η =	0.000		
		R _L =	28.282	η =	0.000		
		g _R =	0.000				
		R =	0.000				
		Gf =	0.000				

Enclosure Classification

Test for Enclosed Building:

Spire Engineering, Inc.

305 N. Plankinton, Suite 101 Milwaukee, WI 53203 (414) 278 - 9200 JOB TITLE Café Hollandor Wind Loads

JOB NO.		SHEET NO.	
CALCULATED BY	Spire Engineering	DATE	
CHECKED BY		DATE	

Test for Open Building:	All walls are at least 80% Ao \geq 0.8Ag	% open.		
Test for Partially Enclosed Building:	Predominately open of	n one side only		
Ao Ag Aoi Agi	Input 500.0 sf 600.0 sf 1000.0 sf 10000.0 sf	Ao ≥ 1.1Aoi Ao > 4' or 0.01Ag Aoi / Agi ≤ 0.20	Test NO YES YES	Building is NOT Partially Enclosed
Conditions to qualify as Partia Ao ≥ 1.1Aoi Ao > smaller of 4' or (Aoi / Agi ≤ 0.20 Where: Ao = the total area of opening Ag = the gross area of that w	ally Enclosed Building. M).01 Ag gs in a wall that receives all in which Ao is identifie	lust satisfy all of the fo positive external press d.	llowing: sure.	

Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.

Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.

Reduction Factor for large volume partially enclosed buildings (Ri) :

If the partially enclosed building contains a single room that is unpartitioned , the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall & roof openings (Aog):		0 sf
Unpartitioned internal volume (Vi):		0 cf
	Ri =	1.00

Altitude adjustment to constant 0.00256 (caution - see code) :

Grd level above sea level =	0.0 ft		Average Air Density =	0.0765 lbm/ft3
Constant =	0.00256	Adj Constant = 0.00256		

Spire Engineering, Inc.

305 N. Plankinton, Suite 101 Milwaukee, WI 53203

(414) 278 - 9200

JOB TITLE Café Hollander Wind Loads

JOB NO. SHEET NO. CALCULATED BY Spire Engineering DATE CHECKED BY DATE

Ultimate Wind Pressures

Wind Loads - Components & Cladding : h ≤ 60'

Kh (case 1) =	0.70	h =	30.0 ft
Base pressure (qh) =	20.2 psf	a =	5.0 ft
Minimum parapet ht =	5.0 ft	GCpi =	+/-0.18
Roof Angle (θ) =	0.0 deg		
Type of roof = N	lonoslope		

Do

ROOI	, c	5Cb +/- CCb	וכ		Surface Pr	essure (psr)	
Area	10 sf	50 sf	100 sf	500 sf	10 sf	50 sf	100 sf	500 s
Negative Zone 1	-1.18	-1.11	-1.08	-1.08	-23.8	-22.4	-21.8	-21.8
Negative Zone 2	-1.98	-1.49	-1.28	-1.28	-39.9	-30.0	-25.8	-25.8
Negative Zone 3	-1.98	-1.49	-1.28	-1.28	-39.9	-30.0	-25.8	-25.8
Positive Zone 1	0.48	0.41	0.38	0.38	16.0	16.0	16.0	16.0
Positive Zones 2 & 3	1.08	0.97	0.92	0.81	21.8	19.6	18.5	16.3
Overhang Zone 1&2	-1.7	-1.63	-1.6	-1.1	-34.3	-32.9	-32.3	-22.2
Overhang Zone 3	-1.7	-1.63	-1.6	-1.1	-34.3	-32.9	-32.3	-22.2
-								

Use	User input					
20 sf	50 sf					
-23.2	-22.4					
-35.7	-30.1					
-35.7	-30.1					
16.0	16.0					
20.8	19.5					
-33.7	-32.9					
-33.7	-32.9					

User input 50 sf 44.2 44.2 -35. -38.

	User	User input				
f	50 sf	150 sf				
8.1	-21.3	-19.8				
8.1	-24.6	-21.5				
6.3	19.5	18.0				

loguiive z		0110 2,	511100	purupe	r = 0n	
verhand	pressures	in the	table	above	assume	an ir

Overhang pressures in the table above assume an internal pressure coefficient (Gcpi) of 0.0 Overhang soffit pressure equals adj wall pressure (which includes internal pressure of 3.6 psf)

p= 21.1

	_						
psf			Surfa	ce Pressure	e (pst)		
Solid Parap	et Pressure	10 sf	20 sf	50 sf	100 sf	200 sf	500 sf
CASE A:	Zone 2 :	56.9	51.4	44.2	38.8	37.8	36.4
	Zone 3 :	56.9	51.4	44.2	38.8	37.8	36.4
CASE B: Edg	ge zones 2 :	-39.8	-37.8	-35.1	-33.1	-31.1	-28.4
Corne	er zones 3 :	-45.5	-42.5	-38.5	-35.5	-32.4	-28.4

V

Walls	GCp +/- GCpi				Surface Pressure (psf)			
Area	10 sf	100 sf	200 sf	500 sf	10 sf	100 sf	200 sf	500 st
Negative Zone 4	-1.17	-1.01	-0.96	-0.90	-23.6	-20.4	-19.4	-18
Negative Zone 5	-1.44	-1.12	-1.03	-0.90	-29.0	-22.6	-20.7	-18
Positive Zone 4 & 5	1.08	0.92	0.87	0.81	21.8	18.6	17.6	16

Note: GCp reduced by 10% due to roof angle <= 10 deg.

JOB NO. SHEET NO. CALCULATED BY Spire Engineering DATE DATE

Stepped roofs $\theta \le 3^{\circ}$ h $\le 60'$ & alt design h<90'

W

Stepped roofs $\theta \le 3^{\circ}$ h $\le 60'$ & alt design h<90' JOB NO. _____ SHEET NO. _____ CALCULATED BY Spire Engineering DATE _____ CHECKED BY DATE

Location of C&C Wind Pressure Zones - ASCE 7-16

W

1

ATC Hazards by Location

A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

Search Information

ASCE 7-16

Search informa			West Bend
Address:	2608 N Downer Ave, Milwaukee, WI 53211		Meg 683 ft
Coordinates:	43.0665232, -87.8778741	Práirie Watertown	
Elevation:	683 ft	Oconomowoco	Milwaukee
Timestamp:	2024-04-10T14:39:54.551Z		Waukesha Oak Creek
Hazard Type:	Wind	-17×7	
		Granie	Racine

ASCE 7-10

90 mph

ASCE 7-05

MRI 10-Year	73 mph	MRI 10-Year	76 mph	ASCE 7-05 Wind Speed
MRI 25-Year	80 mph	MRI 25-Year	84 mph	
MRI 50-Year	85 mph	MRI 50-Year	90 mph	
MRI 100-Year	91 mph	MRI 100-Year	96 mph	
Risk Category I	100 mph	Risk Category I	105 mph	
Risk Category II	106 mph	Risk Category II	115 mph	
Risk Category III	114 mph	Risk Category III-IV	120 mph	
Risk Category IV	118 mph			

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area - in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.